Skip to main content
Log in

High serum adiponectin concentration in children with chronic kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Adiponectin (ADPN) counteracts the inflammatory response of the endothelium, which plays an important role in the development of atherosclerosis in patients with chronic kidney disease (CKD). Data in children with CKD are scarce. We examined serum ADPN concentration in 90 children with various renal disorders: 28 with CKD on conservative treatment (CKD), 21 on regular dialysis treatment (D), and 41 after kidney transplantation (Tx); 27 age-matched healthy children served as controls (C). Body mass index (BMI), estimated glomerular filtration rate (eGFR), lipids, homocysteine, high sensitivity CRP (hsCRP), and systolic blood pressure (SBP) were also measured. Mean serum ADPN concentration was significantly higher in patients with CKD (27.3 μg/ml ±15.0), on D (34.2 μg/ml ±14.9), and after Tx (23.6 μg/ml ±9.5) compared with ADPN levels in C (13.5 μg/ml ±6.1) (p < 0.0001). Serum ADPN concentration was inversely related to BMI (p = 0.001) and SBP (p = 0.004). In the multiple linear regression analysis, only SBP remained independently associated with ADPN plasma levels. Data show that children with CKD have significantly higher serum ADPN, even after Tx. The protective antiarthrosclerotic effect of ADPN may be mediated by lower SBP, a finding that deserves further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wheeler DC (1996) Cardiovascular disease in patients with chronic renal failure. Lancet 348:1673–1674

    Article  PubMed  CAS  Google Scholar 

  2. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Article  PubMed  Google Scholar 

  3. Foley RN, Parfrey SP, Sarnak MJ (1998) Cardiovascular disease in chronic renal failure. Clinical epidemiology of cardiovascular disease in chronic renal failure. Am J Kidney Dis 32(Suppl 3):112–119

    Article  Google Scholar 

  4. Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27

    Article  PubMed  CAS  Google Scholar 

  5. Creager MA, Cooke JP, Mendelsohn ME, Gallagher SJ, Coleman SM, Loscalzo J, Dzau V (1990) Impaired vasodilatation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest 86:228–234

    Article  PubMed  CAS  Google Scholar 

  6. Farid FA, Faheem MS, Heshmat NM, Shaheen KY, Saad SS (2004) Study of the homocysteine status in children with chronic renal failure. Am J Nephrol 24:289–295

    Article  PubMed  CAS  Google Scholar 

  7. Kari JA, Donald AE, Vallance DT, Bruckdorfer KR, Leone A, Mullen MJ, Bruce T (1997) Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney Int 52:468–472

    Article  PubMed  CAS  Google Scholar 

  8. Querfeld U (2004) The clinical significance of vascular calcification in young patients with end-stage renal disease. Pediatr Nephrol 19:478–484

    Article  PubMed  Google Scholar 

  9. Bilginer Y, Ozaltin F, Basaran C, Aki TF, Karabulut E, Duzova A, Besbas N, Topaloglu R, Ozen S, Bakkaloglu M, Bakkaloglu A (2007) Carotid intima-media thickness in children and young adults with renal transplant: internal carotid artery vs. common carotid artery. Pediatr Transplant 11:888–894

    Article  PubMed  CAS  Google Scholar 

  10. Flynn JT (2006) Cardiovascular disease in children with chronic renal failure. Growth Horm IGF Res 16(Suppl A):S84–S90

    Article  PubMed  Google Scholar 

  11. Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahshi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (1999) Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 100:2473–2476

    PubMed  CAS  Google Scholar 

  12. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301

    PubMed  CAS  Google Scholar 

  13. Wiecek A, Kokot F, Cudek J, Adamczak M (2002) The adipose tissue – a novel endocrine organ of interest to the nephrologist. Nephrol Dial Transplant 17:191–195

    Article  PubMed  Google Scholar 

  14. Arita Y, Kihara S, Ouchi N, Maeda K, Kuriyama H, Okamoto Y, Kumada M, Hotta K, Nishida M, Takahashi M, Nakamura T, Shimomura I, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (2002) Adipocyte-derives plasma protein adiponectin acts as a platelet-derived growth factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation 105:2893–2898

    Article  PubMed  CAS  Google Scholar 

  15. Fesüs G, Dubrovska G, Gorzelniak K, Kluge R, Huang Y, Luft FC, Gollasch M (2007) Adiponectin is a novel humoral vasodilator. Cardiovasc Res 75:719–727

    Article  PubMed  Google Scholar 

  16. Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026

    Article  PubMed  CAS  Google Scholar 

  17. Zoccali C, Mallamaci F, Tripepi G, Benedetto F, Cutrupi S, Parlongo S, Malatino L, Bonanno G, Seminara S, Rapisarda F, Fatuzzo P, Buemi M, Nicocia G, Tanaka S, Ouchi N, Kihara S, Funahashi T, Matsuzawa Y (2002) Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol 13:134–141

    Article  PubMed  CAS  Google Scholar 

  18. Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K, Fu Y, Motone M, Yamamoto K, Matsuo A, Ohashi K, Kihara S, Funahashi T, Rakugi H, Matsuzawa Y, Ogihara T (2004) Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 43:1318–1323

    Article  PubMed  CAS  Google Scholar 

  19. Adamczak M, Chudek J, Wiecek A (2009) Adiponectin in patients with chronic kidney disease. Semin Dial 22(4):391–395

    Article  PubMed  Google Scholar 

  20. Bakkaloglu SA, Buyan N, Funahashi T, Pasaoglu H, Elhan AH, Hasanoglu E, Soylemezoglu O (2005) Adiponectin levels and atherosclerotic risk factors in pediatric chronic peritoneal dialysis patients. Perit Dial Int 25:357–361

    PubMed  CAS  Google Scholar 

  21. Bakkaloglu SA, Soylemezoglu O, Buyan N, Oktar SO, Funahashi T, Pasaoglu H, Elhan AH, Peru H, Hasanoglu E (2006) Adiponectin levels and arteriosclerotic risk factors in pediatric renal transplant recipients. Pediatr Transplant 10:187–192

    Article  PubMed  CAS  Google Scholar 

  22. Mitsnefes M, Kartal J, Khoury P, Daniels S (2007) Adiponectin in children with chronic kidney disease: role of adiposity and kidney dysfunction. Clin J Am Soc Nephrol 2:46–50

    Article  PubMed  CAS  Google Scholar 

  23. Arbeiter AK, Büscher R, Petersenn S, Hauffa BP, Mann K, Hoyer PF (2009) Ghrelin and other appetite-regulation hormones in pediatric patients with chronic renal failure during dialysis and following kidney transplantation. Nephrol Dial Transplant 24:643–646

    Article  PubMed  CAS  Google Scholar 

  24. Büscher AK, Büscher R, Hauffa BP, Hoyer PF (2010) Alterations in appetite-regulating hormones influence protein-energy wasting in pediatric patients with chronic kidney disease. Pediatr Nephrol 25:2295–2301

    Article  PubMed  Google Scholar 

  25. Kamariski M, Biscardi M, Cestino L, Miatello R, Guntsche E, Valles PG (2009) Adiponectin in children on peritoneal dialysis: relationship to insulin resistance and nutritional status. Nephron Clin Pract 113:c24–c32

    Article  PubMed  CAS  Google Scholar 

  26. Iwashima A, Horio T, Kumada M (2006) Adiponectin and renal function, and implication as a risk of cardiocaskular disease. Am J Cardiol 98(12):1603–1608

    Article  PubMed  CAS  Google Scholar 

  27. Shoji T, Kimoto E, Shinohara K, Hatsuda S, Nishizawa Y (2004) Molecular forms of adiponectin in uremic plasma (Letter to the editor). Nephrol Dial Transplant 19:1938

    Article  Google Scholar 

  28. Shen YY, Charlesworth JA, Kelly JJ, Peake PW (2007) The effect of renal transplantation on adiponectin and its isoforms and receptors. Metabolism 56:1201–1208

    Article  PubMed  CAS  Google Scholar 

  29. Punthakee Z, Delvin EE, O'loughlin J, Paradis G, Levy E, Platt RW, Lambert M (2006) Adiponectin, adiposity and insulin resitance in children and adolescents. J Clin Endocrinol Metab 91(6):2119–2125

    Article  PubMed  CAS  Google Scholar 

  30. Guebre-Egziabher F, Bernhard J, Funahashi T (2005) Adiponectin in chronic kidney disease is related more to metabolic disturbance than to decline in renal function. Nephrol Dial Transplant 20(1):129–134

    Article  PubMed  CAS  Google Scholar 

  31. Schoppen S, Riestra P, García-Anguita A, López-Simón L, Cano B, de Oya I, de Oya M, Garcés C (2010) Leptin and adiponectin levels in pubertal children: relationship with anthropometric variables and body composition. Clin Chem Lab Med 48(5):707–711

    Article  PubMed  CAS  Google Scholar 

  32. Sethna CB, Leonard MB, Gallagher PR, Meyers KE (2009) Serum adiponectin levels and ambulatory blood pressure monitoring in pediatric renal transplant recipients. Transplantation 88(8):1030–1037

    Article  PubMed  CAS  Google Scholar 

  33. Agata J, Nagahra D, Kinoshita S, Takagawa Y, Moniwa N, Yoshida D, Ura N, Shimamoto K (2004) Angiotensin II receptor blocker prevents increased arterial stiffness in patients with essential hypertension. Circ J 68(12):1194–119834

    Article  PubMed  CAS  Google Scholar 

  34. Ouchi N, Kihara S, Funashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H, Matsuzawa Y (2003) Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107:671–674

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the assistance of Mrs. Westphal, technician in the laboratory of the Children’s Hospital of the University of Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina F. Möller.

Additional information

M.J. Kemper and D.E. Müller-Wiefel contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, K.F., Dieterman, C., Herich, L. et al. High serum adiponectin concentration in children with chronic kidney disease. Pediatr Nephrol 27, 243–249 (2012). https://doi.org/10.1007/s00467-011-1971-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1971-1

Keywords

Navigation