Skip to main content

Advertisement

Log in

Xenopus pronephros development—past, present, and future

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Kidney development is a multi-step process where undifferentiated mesenchyme is converted into a highly complex organ through several inductive events. The general principles regulating these events have been under intense investigation and despite extensive progress, many open questions remain. While the metanephric kidneys of mouse and rat have served as the primary model, other organisms also significantly contribute to the field. In particular, the more primitive pronephric kidney has emerged as an alternative model due to its simplicity and experimental accessibility. Many aspects of nephron development such as the patterning along its proximo-distal axis are evolutionarily conserved and are therefore directly applicable to higher vertebrates. This review will focus on the current understanding of pronephros development in Xenopus. It summarizes how signaling, transcriptional regulation, as well as post-transcriptional mechanisms contribute to the differentiation of renal epithelial cells. The data show that even in the simple pronephros the mechanisms regulating kidney organogenesis are highly complex. It also illustrates that a multifaceted analysis embracing modern genome-wide approaches combined with single gene analysis will be required to fully understand all the intricacies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saxén L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  2. Vize P, Woolf A, Bard J (2003) The kidney: from normal development to congenital diseases. Academic Press, Amsterdam

    Google Scholar 

  3. Smith HW (1953) From fish to philosopher. Little, Brown, Boston

    Google Scholar 

  4. Hall RW (1904) The development of the mesonephros and the Müllerian ducts in amphibia. Bull Mus Comp Zool 45:31–125

    Google Scholar 

  5. Fox H (1963) The amphibian pronephros. Q Rev Biol 38:1–25

    Article  CAS  PubMed  Google Scholar 

  6. White JT, Zhang B, Cerqueira DM, Tran U, Wessely O (2010) Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. Development 137:1863–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gerth VE, Zhou X, Vize PD (2005) Nephrin expression and three-dimensional morphogenesis of the Xenopus pronephric glomus. Dev Dyn 233:1131–1139

    Article  CAS  PubMed  Google Scholar 

  8. Doherty JR, Johnson Hamlet MR, Kuliyev E, Mead PE (2007) A flk-1 promoter/enhancer reporter transgenic Xenopus laevis generated using the Sleeping Beauty transposon system: an in vivo model for vascular studies. Dev Dyn 236:2808–2817

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi-Iwanaga H (2002) Comparative anatomy of the podocyte: a scanning electron microscopic study. Microsc Res Tech 57:196–202

    Article  PubMed  Google Scholar 

  10. Tran U, Pickney LM, Ozpolat BD, Wessely O (2007) Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Dev Biol 307:152–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brandli AW (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9:R84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhou X, Vize PD (2004) Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev Biol 271:322–338

    Article  CAS  PubMed  Google Scholar 

  13. Mobjerg N, Larsen EH, Jespersen A (2000) Morphology of the kidney in larvae of Bufo viridis (Amphibia, Anura, Bufonidae). J Morphol 245:177–195

    Article  CAS  PubMed  Google Scholar 

  14. Zhou X, Vize PD (2005) Amino acid cotransporter SLC3A2 is selectively expressed in the early proximal segment of Xenopus pronephric kidney nephrons. Gene Expr Patterns 5:774–777

    Article  CAS  PubMed  Google Scholar 

  15. Eid SR, Terrettaz A, Nagata K, Brandli AW (2002) Embryonic expression of Xenopus SGLT-1 L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney. Int J Dev Biol 46:177–184

    CAS  PubMed  Google Scholar 

  16. Christensen EI, Raciti D, Reggiani L, Verroust PJ, Brandli AW (2008) Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflugers Arch 456:1163–1176

    Article  CAS  PubMed  Google Scholar 

  17. Reggiani L, Raciti D, Airik R, Kispert A, Brandli AW (2007) The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21:2358–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou X, Vize PD (2005) Pronephric regulation of acid-base balance; coexpression of carbonic anhydrase type 2 and sodium-bicarbonate cotransporter-1 in the late distal segment. Dev Dyn 233:142–144

    Article  CAS  PubMed  Google Scholar 

  19. Vize PD (2003) The chloride conductance channel ClC-K is a specific marker for the Xenopus pronephric distal tubule and duct. Gene Expr Patterns 3:347–350

    Article  CAS  PubMed  Google Scholar 

  20. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    Article  CAS  PubMed  Google Scholar 

  21. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kyuno J, Jones EA (2007) GDNF expression during Xenopus development. Gene Expr Patterns 7:313–317

    Article  CAS  PubMed  Google Scholar 

  23. Osafune K, Nishinakamura R, Komazaki S, Asashima M (2002) In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ 44:161–167

    Article  PubMed  Google Scholar 

  24. Drawbridge J, Meighan CM, Mitchell EA (2000) GDNF and GFRalpha-1 are components of the axolotl pronephric duct guidance system. Dev Biol 228:116–124

    Article  CAS  PubMed  Google Scholar 

  25. Urban AE, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD (2006) FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. Dev Biol 297:103–117

    Article  CAS  PubMed  Google Scholar 

  26. Saulnier DM, Ghanbari H, Brandli AW (2002) Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. Dev Biol 248:13–28

    Article  CAS  PubMed  Google Scholar 

  27. Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR (2005) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132:3847–3857

    Article  CAS  PubMed  Google Scholar 

  28. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    Article  CAS  PubMed  Google Scholar 

  29. Tetelin S, Jones EA (2010) Xenopus Wnt11b is identified as a potential pronephric inducer. Dev Dyn 239:148–159

    CAS  PubMed  Google Scholar 

  30. Lavery DL, Davenport IR, Turnbull YD, Wheeler GN, Hoppler S (2008) Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis. Dev Dyn 237:768–779

    Article  CAS  PubMed  Google Scholar 

  31. Satow R, Chan TC, Asashima M (2004) The role of Xenopus frizzled-8 in pronephric development. Biochem Biophys Res Commun 321:487–494

    Article  CAS  PubMed  Google Scholar 

  32. Lyons JP, Miller RK, Zhou X, Weidinger G, Deroo T, Denayer T, Park JI, Ji H, Hong JY, Li A, Moon RT, Jones EA, Vleminckx K, Vize PD, McCrea PD (2009) Requirement of Wnt/beta-catenin signaling in pronephric kidney development. Mech Dev 126:142–159

    Article  CAS  PubMed  Google Scholar 

  33. Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF (2008) Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. Dev Biol 320:351–365

    Article  CAS  PubMed  Google Scholar 

  34. Bracken CM, Mizeracka K, McLaughlin KA (2008) Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis. Dev Dyn 237:132–144

    Article  CAS  PubMed  Google Scholar 

  35. McLaughlin KA, Rones MS, Mercola M (2000) Notch regulates cell fate in the developing pronephros. Dev Biol 227:567–580

    Article  CAS  PubMed  Google Scholar 

  36. Taelman V, Van Campenhout C, Solter M, Pieler T, Bellefroid EJ (2006) The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen. Development 133:2961–2971

    Article  CAS  PubMed  Google Scholar 

  37. Naylor RW, Jones EA (2009) Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros. Development 136:3585–3595

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Pathak N, Kramer-Zucker A, Drummond IA (2007) Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134:1111–1122

    Article  CAS  PubMed  Google Scholar 

  39. Ma M, Jiang YJ (2007) Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Gene 3:e18

    Article  CAS  Google Scholar 

  40. Carroll TJ, Vize PD (1999) Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol 214:46–59

    Article  CAS  PubMed  Google Scholar 

  41. Carroll TJ, Wallingford JB, Vize PD (1999) Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. Dev Genet 24:199–207

    Article  CAS  PubMed  Google Scholar 

  42. Carroll TJ, Vize PD (1996) Wilms' tumor suppressor gene is involved in the development of disparate kidney forms: evidence from expression in the Xenopus pronephros. Dev Dyn 206:131–138

    Article  CAS  PubMed  Google Scholar 

  43. Vignali R, Poggi L, Madeddu F, Barsacchi G (2000) HNF1(beta) is required for mesoderm induction in the Xenopus embryo. Development 127:1455–1465

    Article  CAS  PubMed  Google Scholar 

  44. Demartis A, Maffei M, Vignali R, Barsacchi G, De Simone V (1994) Cloning and developmental expression of LFB3/HNF1 beta transcription factor in Xenopus laevis. Mech Dev 47:19–28

    Article  CAS  PubMed  Google Scholar 

  45. Dehbi M, Ghahremani M, Lechner M, Dressler G, Pelletier J (1996) The paired-box transcription factor, PAX2, positively modulates expression of the Wilms' tumor suppressor gene (WT1). Oncogene 13:447–453

    CAS  PubMed  Google Scholar 

  46. Majumdar A, Lun K, Brand M, Drummond IA (2000) Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127:2089–2098

    Article  CAS  PubMed  Google Scholar 

  47. Ryan G, Steele-Perkins V, Morris JF, Rauscher FJ 3rd, Dressler GR (1995) Repression of Pax-2 by WT1 during normal kidney development. Development 121:867–875

    Article  CAS  PubMed  Google Scholar 

  48. Chan TC, Takahashi S, Asashima M (2000) A role for Xlim-1 in pronephros development in Xenopus laevis. Dev Biol 228:256–269

    Article  CAS  PubMed  Google Scholar 

  49. Wallingford JB, Carroll TJ, Vize PD (1998) Precocious expression of the Wilms' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. Dev Biol 202:103–112

    Article  CAS  PubMed  Google Scholar 

  50. Wild W, Pogge von Strandmann E, Nastos A, Senkel S, Lingott-Frieg A, Bulman M, Bingham C, Ellard S, Hattersley AT, Ryffel GU (2000) The mutated human gene encoding hepatocyte nuclear factor 1beta inhibits kidney formation in developing Xenopus embryos. Proc Natl Acad Sci USA 97:4695–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu G, Bohn S, Ryffel GU (2004) The HNF1beta transcription factor has several domains involved in nephrogenesis and partially rescues Pax8/lim1-induced kidney malformations. Eur J Biochem 271:3715–3728

    Article  CAS  PubMed  Google Scholar 

  52. Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gomez-Skarmeta JL (2007) Odd-skipped genes encode repressors that control kidney development. Dev Biol 301:518–531

    Article  CAS  PubMed  Google Scholar 

  53. Van Campenhout C, Nichane M, Antoniou A, Pendeville H, Bronchain OJ, Marine JC, Mazabraud A, Voz ML, Bellefroid EJ (2006) Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Dev Biol 294:203–219

    Article  PubMed  CAS  Google Scholar 

  54. Alarcon P, Rodriguez-Seguel E, Fernandez-Gonzalez A, Rubio R, Gomez-Skarmeta JL (2008) A dual requirement for Iroquois genes during Xenopus kidney development. Development 135:3197–3207

    Article  CAS  PubMed  Google Scholar 

  55. Weber H, Holewa B, Jones EA, Ryffel GU (1996) Mesoderm and endoderm differentiation in animal cap explants: identification of the HNF4-binding site as an activin A responsive element in the Xenopus HNF1alpha promoter. Development 122:1975–1984

    Article  CAS  PubMed  Google Scholar 

  56. Deconinck AE, Mead PE, Tevosian SG, Crispino JD, Katz SG, Zon LI, Orkin SH (2000) FOG acts as a repressor of red blood cell development in Xenopus. Development 127:2031–2040

    Article  CAS  PubMed  Google Scholar 

  57. Rascle A, Suleiman H, Neumann T, Witzgall R (2007) Role of transcription factors in podocytes. Nephron Exp Nephrol 106:e60–e66

    Article  CAS  PubMed  Google Scholar 

  58. Haldin CE, Nijjar S, Masse K, Barnett MW, Jones EA (2003) Isolation and growth factor inducibility of the Xenopus laevis Lmx1b gene. Int J Dev Biol 47:253–262

    CAS  PubMed  Google Scholar 

  59. Simrick S, Masse K, Jones EA (2005) Developmental expression of Pod1 in Xenopus laevis. Int J Dev Biol 49:59–63

    Article  CAS  PubMed  Google Scholar 

  60. Davidson EH, McClay DR, Hood L (2003) Regulatory gene networks and the properties of the developmental process. Proc Natl Acad Sci USA 100:1475–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Levine M, Davidson EH (2005) Gene regulatory networks for development. Proc Natl Acad Sci USA 102:4936–4942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Agrawal R, Tran U, Wessely O (2009) The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 136:3927–3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wessely O, Agrawal R, Tran U (2010) microRNAs in kidney development: Lessons from the frog. RNA Biol 7:1–4

    Article  Google Scholar 

  64. Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, Blum M, De Robertis EM, Wessely O (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137:1107–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065

    Article  CAS  PubMed  Google Scholar 

  67. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328:633–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vize PD, Seufert DW, Carroll TJ, Wallingford JB (1997) Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol 188:189–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. Larraín, Dr. T. Obara, Dr. E. Pera, Dr. D. Romaker and B. Zhang for critical reading of the manuscript. Work performed in the Wessely laboratory is funded by NIH/NIDDK (1R01DK080745-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Wessely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wessely, O., Tran, U. Xenopus pronephros development—past, present, and future. Pediatr Nephrol 26, 1545–1551 (2011). https://doi.org/10.1007/s00467-011-1881-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1881-2

Keywords