Skip to main content

Advertisement

Log in

Mesna or cysteine prevents chloroacetaldehyde-induced cell death of human proximal tubule cells

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Chloroacetaldehyde (CAA) is formed in the body from the chemotherapeutically used drug ifosfamide (IFO). CAA leads to cell death in proximal tubule cells mainly through the mechanism of necrosis rather than apoptosis. During chemotherapy, 2-mercaptosulfonic acid (mesna) is used with IFO to protect the urothel from cell damage. Little is known of the effect of mesna on renal proximal tubule cells, the primary site of damage after IFO treatment. Mesna contains a sulfhydryl (SH) group. To clarify whether SH-group-containing molecules can prevent CAA-induced cell death, we studied the effect of mesna and cysteine on necrosis, apoptosis, and protein content in a human proximal tubule-derived cell line (IHKE cells) treated with CAA. Both substances prevented CAA-induced necrotic cell death and protein loss and restored CAA-inhibited caspase-3 activity. CAA also prevented cisplatin-induced apoptosis. This inhibition was reversible in the presence of glutathione (GSH). We conclude that SH-containing molecules can protect proximal tubule cells from cell death because they interact with CAA before CAA can disturb other important cellular SH groups. A sufficient supply of intra- and extracellular SH groups during IFO chemotherapy may therefore have the ability to protect renal tubule cells from cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Carli M, Passone E, Perilongo G, Bisogno G (2003) Ifosfamide in pediatric solid tumors. Oncology 65:99–104

    Article  CAS  Google Scholar 

  2. Boccardo F, Guglielmini P (2003) Ifosfamide in urologic cancer. Oncology 65:67–72

    Article  CAS  Google Scholar 

  3. Skinner R, Sharkey IM, Pearson AD, Craft AW (1993) Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol 11:173–190

    Article  CAS  Google Scholar 

  4. Springate JE, Chan K, Lu H, Davies S, Taub M (1999) Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. In Vitro Cell Dev Biol Anim 35:314–317

    Article  CAS  Google Scholar 

  5. Aleksa K, Halachmi N, Ito S, Koren G (2004) Renal ontogeny of ifosfamide nephrotoxicity. J Lab Clin Med 144:285–293

    Article  CAS  Google Scholar 

  6. Gale R, Van Vugt A, Rosen L, Chang L, Lorusso P, Valdivieso M, Malburg L, Struck R, Morgan L (2006) Phase-1 study of isophosphoramide mustard (IPM)-lysine in advanced cancers. J Clin Oncol 24:18S, abstract 9524

    Article  Google Scholar 

  7. Aleksa K, Ito S, Koren G (2004) Renal-tubule metabolism of ifosfamide to the nephrotoxic chloroacetaldehyde: pharmacokinetic modeling for estimation of intracellular levels. J Lab Clin Med 143:159–162

    Article  CAS  Google Scholar 

  8. Woodland C, Ito S, Granvil CP, Wainer IW, Klein J, Koren G (2000) Evidence of renal metabolism of ifosfamide to nephrotoxic metabolites. Life Sci 68:109–117

    Article  CAS  Google Scholar 

  9. Nicolao P, Giometto B (2003) Neurological toxicity of ifosfamide. Oncology 65:11–16

    Article  CAS  Google Scholar 

  10. Siu LL, Moore MJ (1998) Use of mesna to prevent ifosfamide-induced urotoxicity. Support Care Cancer 6:144–154

    Article  CAS  Google Scholar 

  11. James CA, Mant TG, Rogers HJ (1987) Pharmacokinetics of intravenous and oral sodium 2-mercaptoethane sulphonate (mesna) in normal subjects. Br J Clin Pharmacol 23:561–568

    Article  CAS  Google Scholar 

  12. Brock N, Pohl J, Stekar J (1981) Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention. 2. Comparative study on the uroprotective efficacy of thiols and other sulfur compounds. Eur J Cancer Clin Oncol 17:1155–1163

    Article  CAS  Google Scholar 

  13. Goren MP, Pratt CB, Meyer WH, Wright RK, Dodge RK, Viar MJ (1989) Mesna excretion and ifosfamide nephrotoxicity in children. Cancer Res 49:7153–7157

    CAS  PubMed  Google Scholar 

  14. Ormstad K, Uehara N (1982) Renal transport and disposition of Na-2-mercaptoethane sulfonate disulfide (dimesna) in the rat. FEBS Lett 150:354–358

    Article  CAS  Google Scholar 

  15. Mohrmann M, Ansorge S, Schonfeld B, Brandis M (1994) Dithio-bis-mercaptoethanesulphonate (DIMESNA) does not prevent cellular damage by metabolites of ifosfamide and cyclophosphamide in LLC-PK1 cells. Pediatr Nephrol 8:458–465

    Article  CAS  Google Scholar 

  16. Sangster G, Kaye SB, Calman KC, Dalton JF (1984) Failure of 2-mercaptoethane sulphonate sodium (mesna) to protect against ifosfamide nephrotoxicity. Eur J Cancer Clin Oncol 20:435–436

    Article  CAS  Google Scholar 

  17. Wagner T (1994) Ifosfamide clinical pharmacokinetics. Clin Pharmacokinet 26:439–456

    Article  CAS  Google Scholar 

  18. Lind MJ, McGown AT, Hadfield JA, Thatcher N, Crowther D, Fox BW (1989) The effect of ifosfamide and its metabolites on intracellular glutathione levels in vitro and in vivo. Biochem Pharmacol 38:1835–1840

    Article  CAS  Google Scholar 

  19. Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333:19–39

    Article  CAS  Google Scholar 

  20. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  CAS  Google Scholar 

  21. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  Google Scholar 

  22. Benesic A, Schwerdt G, Freudinger R, Mildenberger S, Groezinger F, Wollny B, Kirchhoff A, Gekle M (2006) Chloroacetaldehyde as a sulfhydryl-reagent: the role of critical thiol-groups in ifosfamide nephropathy. Kidney Blood Press Res 29:280–293

    Article  CAS  Google Scholar 

  23. Schwerdt G, Gordjani N, Freudinger R, Wollny B, Kirchhoff A, Gekle M (2006) Chloroacetaldehyde and acrolein-induced death of human proximal tubule cells. Pediatr Nephrol 21:60–67

    Article  Google Scholar 

  24. Tveito G, Hansteen I, Dalen H, Haugen A (1989) Immortalization of normal human kidney epithelial cells by nickel(II). Cancer Res 49:1829–1835

    CAS  PubMed  Google Scholar 

  25. Davis PK, Ho A, Dowdy SF (2001) Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques 30:1322–1331

    Article  CAS  Google Scholar 

  26. Schwerdt G, Freudinger R, Schuster C, Weber F, Thews O, Gekle M (2005) Cisplatin-induced apoptosis is enhanced by hypoxia and by inhibition of mitochondria in renal collecting duct cells. Toxicol Sci 85:735–742

    Article  CAS  Google Scholar 

  27. Lane RD, Federman D, Flora JL, Beck BL (1986) Computer-assisted determination of protein concentrations from dye-binding and bicinchoninic acid protein assays performed in microtiter plates. J Immunol Methods 92:261–270

    Article  CAS  Google Scholar 

  28. Schwerdt G, Freudinger R, Schuster C, Silbernagl S, Gekle M (2004) Inhibition of mitochondria and extracellular acidification enhance ochratoxin A-induced apoptosis in renal collecting duct-derived MDCK-C7 cells. Cell Physiol Biochem 14:47–56

    Article  CAS  Google Scholar 

  29. Furlanut M, Franceschi L (2003) Pharmacology of ifosfamide. Oncology 65:2–6

    Article  CAS  Google Scholar 

  30. Sener G, Sehirli O, Yegen BC, Cetinel S, Gedik N, Sakarcan A (2004) Melatonin attenuates ifosfamide-induced Fanconi syndrome in rats. J Pineal Res 37:17–25

    Article  CAS  Google Scholar 

  31. Tomova N, Ivanova V (1985) Significance of Cys-153 for the phosphatase activity of glyceraldehyde-3-phosphate dehydrogenase. Biomed Biochim Acta 44:1295–1302

    CAS  PubMed  Google Scholar 

  32. Liu R, Sharom FJ (1996) Site-directed fluorescence labeling of P-glycoprotein on cysteine residues in the nucleotide binding domains. Biochemistry 35:11865–11873

    Article  CAS  Google Scholar 

  33. Urbatsch IL, Gimi K, Wilke-Mounts S, Lerner-Marmarosh N, Rousseau ME, Gros P, Senior AE (2001) Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein. J Biol Chem 276:26980–26987

    Article  CAS  Google Scholar 

  34. Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361

    Article  CAS  Google Scholar 

  35. Leist M, Jaattela M (2001) Triggering of apoptosis by cathepsins. Cell Death Differ 8:324–326

    Article  CAS  Google Scholar 

  36. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  CAS  Google Scholar 

  37. Chu F, Ward NE, O’Brian CA (2003) PKC isozyme S-cysteinylation by cystine stimulates the pro-apoptotic isozyme PKC delta and inactivates the oncogenic isozyme PKC epsilon. Carcinogenesis 24:317–325

    Article  CAS  Google Scholar 

  38. Batista CK, Mota JM, Souza ML, Leitao BT, Souza MH, Brito GA, Cunha FQ, Ribeiro RA (2007) Amifostine and glutathione prevent ifosfamide- and acrolein-induced hemorrhagic cystitis. Cancer Chemother Pharmacol 59:71–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AB was supported by DFG grant BE 3168/1-1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Schwerdt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwerdt, G., Kirchhoff, A., Freudinger, R. et al. Mesna or cysteine prevents chloroacetaldehyde-induced cell death of human proximal tubule cells. Pediatr Nephrol 22, 798–803 (2007). https://doi.org/10.1007/s00467-006-0414-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0414-x

Keywords

Navigation