Skip to main content

Advertisement

Log in

Essentials of laboratory medicine for the nephrology clinician

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The purpose of this review is to compile and bring to the attention of the pediatric nephrology community various aspects of laboratory medicine pertinent to nephrology. The review addresses different aspects in laboratory medicine that should be taken into account during interpretation of a test result, such as methodological and analytical issues, statistical considerations and the biological interpretation of a test result in the context of the clinical setting. An understanding of the considerations and limitations in laboratory medicine will be helpful to the pediatric nephrologist when ordering and interpreting biochemical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Oxley DK, Garg U, Olsowka ES (2001) Maximizing the information from laboratory test-the Ulysses syndrome. In: Jacobs DS, DeMott WR, Oxley DK (eds) Laboratory test handbook, 5th edn. Lexi-Comp, Hudson, pp 15–33

    Google Scholar 

  2. Hilgenfeld MS, Simon S, Blowey D, Richmond W, Alon US (2004) Lack of seasonal variations in urinary calcium/creatinine ratio in school-age children. Pediatr Nephrol 191153–1155

    Article  PubMed  Google Scholar 

  3. Olsowka ES, Garg U (2001) Specimen collection and point of care testing. In: Jacobs DS, DeMott WR, Oxley DK (eds) Laboratory test handbook, 5th edn. Lexi-Comp, Hudson pp 35–39

    Google Scholar 

  4. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, Hostetter T, Levey AS, Panteghini M, Welch M, Eckfeldt JH, National Kidney Disease Education Program Laboratory Working Group (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52:5–18

    Article  CAS  PubMed  Google Scholar 

  5. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S (1983) Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am J Clin Nutr 37:478–494

    Article  CAS  PubMed  Google Scholar 

  6. Picou D, Reeds PJ, Jackson A, Poulter N (1976) The measurement of muscle mass in children using [15N] creatine. Pediatr Res 10:184–188

    Article  CAS  PubMed  Google Scholar 

  7. Fitch CD, Sinton DW (1964) A study of creatine metabolism in diseases causing muscle wasting. J Clin Invest 43:444–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crim MC, Calloway DH, Margen S (1975) Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr 105:428–438

    Article  CAS  PubMed  Google Scholar 

  9. Matos V, Van Melle G, Werner D, Bardy D, Guignard JP (1999) Urinary oxalate and urate to creatinine ratios in a healthy pediatric population. Am J Kidney Dis 34:e1

    Article  CAS  PubMed  Google Scholar 

  10. Matos V, Van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP (1997) Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr 131:252–257

    Article  CAS  PubMed  Google Scholar 

  11. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953

    Article  CAS  PubMed  Google Scholar 

  12. Chadha V, Garg U, Warady BA, Alon US (2000) Sieving coefficient inaccuracies during hemodiafiltration in patients with hyperbilirubinemia. Pediatr Nephrol 15:33–35

    Article  CAS  PubMed  Google Scholar 

  13. Blijenberg BG, Brouwer HJ, Kuller TJ, Leeneman R, van Leeuwen CJ (1994) Improvements in creatinine methodology: a critical assessment. Eur J Clin Chem Clin Biochem 32:529–537

    CAS  PubMed  Google Scholar 

  14. Badiou S, Dupuy AM, Descomps B, Cristolead JP (2003) Comparison between the enzymatic vitros assay for creatinine determination and three other methods adapted on the Olympus analyzer. J Clin Lab Anal 17:235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Coresh J, Toto RD, Kirk KA, Whelton PK, Massry S, Jones C, Agodoa L, Van Lente F (1998) Creatinine clearance as a measure of GFR in screenees for the African-American Study of Kidney Disease and Hypertension pilot study. Am J Kidney Dis 32:32–42

    Article  CAS  PubMed  Google Scholar 

  16. Hsu CY, Chertow GM, Curhan GC (2002) Methodological issues in studying the epidemiology of mild to moderate chronic renal insufficiency. Kidney Int 61:1567–1576

    Article  PubMed  Google Scholar 

  17. Wan LL, Yano S, Hiromura K, Tsukada Y, Tomono S, Kawazu S (1995) Effects of posture on creatinine clearance and urinary protein excretion in patients with various renal diseases. Clin Nephrol 43:312–317

    CAS  PubMed  Google Scholar 

  18. Koopman MG, Koomen GC, Krediet RT, de Moor EA, Hoek FJ, Arisz L (1989) Circadian rhythm of glomerular filtration rate in normal individuals. Clin Sci (Lond) 77:105–111

    Article  CAS  Google Scholar 

  19. Miller WG, Myers GL, Ashwood ER, Killeen AA, Wang E, Thienpont LM, Siekmann L (2005) Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch Pathol Lab Med 129:297–304

    Article  CAS  PubMed  Google Scholar 

  20. Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 162:2246–2251

    Article  CAS  PubMed  Google Scholar 

  21. Figge J, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26:1807–1810

    Article  CAS  PubMed  Google Scholar 

  22. Hatherill M, Waggie, Z, Purves L, Reynolds L, Argent A (2002) Correction of the anion gap for albumin in order to detect occult tissue anions in shock. Arch Dis Child 87:526–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Durward A, Mayer A, Skellett S, Taylor D, Hanna S, Tibby SM, Murdoch IA (2003) Hypoalbuminemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child 88:419–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chadha V, Garg U, Alon US (2001) Measurement of urinary concentration: a critical appraisal of methodologies. Pediatr Nephrol 16:374–382

    Article  CAS  PubMed  Google Scholar 

  25. National Kidney Foundation (2002) K/DOQI-Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(supp 1):S1–S266

    Google Scholar 

  26. Constantiner M, Sehgal AR, Humbert L, Constantiner D, Arce L, Sedor JR, Schelling JR (2005) A dipstick protein and specific gravity algorithm accurately predicts pathological proteinuria. Kidney Dis 45:833–841

    Article  CAS  Google Scholar 

  27. Oh M, Carroll HJ (2002) Value and determinants of urine anion gap. Nephron 90:252–255

    Article  PubMed  Google Scholar 

  28. Herrin JT (2004) Renal tubular acidosis. In: Avner ED, Harmon WE, Niaudet P (eds) Pediatric Nephrology, 5th edn. Lippincott, Williams and Wilkins, Philadelphia, pp 757–776

    Google Scholar 

  29. Srivastava T, Kainer G (2004) Collection under paraffin is not necessary for stability of urine pH over 24 h. Pediatr Nephrol 19:169–171

    Article  PubMed  Google Scholar 

  30. Richmond W, Colgan G, Simon S, Stuart-Hilgenfeld M, Wilson N, Alon US (2005) Random urine calcium/osmolality in the assessment of calciuria in children with decreased muscle mass. Clin Nephrol 64:264–270

    Article  CAS  PubMed  Google Scholar 

  31. National Kidney Foundation (2003) K/DOQI clinical practice guidelines for managing dyslipidemias in chronic kidney disease. Am J Kidney Dis 41(supp 4):S1–S92

    Google Scholar 

  32. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    Article  CAS  PubMed  Google Scholar 

  33. Senti M, Pedro-Botet J, Nogues X, Rubies-Prat J (1991) Influence of intermediate-density lipoproteins on the accuracy of the Friedewald formula. Clin Chem 37:1394–1397

    Article  CAS  PubMed  Google Scholar 

  34. Nauck M, Kramer-Guth A, Bartens W, Marz W, Wieland H, Wanner C (1996) Is the determination of LDL cholesterol according to Friedewald accurate in CAPD and HD patients? Clin Nephrol 46:319–325

    CAS  PubMed  Google Scholar 

  35. Bairaktari E, Elisaf N, Tzallas C, Karabina SA, Tselepis AD, Siamopoulos KC, Tsolas O (2001) Evaluation of five methods for determining low-density lipoprotein cholesterol (LDL-C) in hemodialysis patients. Clin Biochem 33:593–602

    Article  Google Scholar 

  36. Frezzotti A, Margarucci Gambini AM, Coppa G, De Sio G (1998) Total carbon dioxide measured by the Vitros enzymatic method. Clin Chem Lab Med 36:43–46

    Article  CAS  PubMed  Google Scholar 

  37. National Kidney Foundation (2003) K/DOQI - clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42(supp 3):S1–S202

    Google Scholar 

  38. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    Article  CAS  PubMed  Google Scholar 

  39. Schwartz GJ, Feld LG, Langford DJ (1984) A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr 104:849–854

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526

    Article  CAS  PubMed  Google Scholar 

  41. Hellerstein S, Berenbom M, DiMaggio S, Erwin P, Simon SD, Wilson N (2004) Comparison of two formulae for estimation of glomerular filtration rate in children. Pediatr Nephrol 19:780–784

    Article  PubMed  Google Scholar 

  42. Traub SL, Johnson CE (1980) Comparison of methods of estimating creatinine clearance in children. Am J Hosp Pharm 37:195–201

    CAS  PubMed  Google Scholar 

  43. Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM (1976) Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 51:875–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shull BC, Haughey D, Koup JR, Baliah T, Li PK (1978) A useful method for predicting creatinine clearance in children. Clin Chem 24:1167–1169

    Article  CAS  PubMed  Google Scholar 

  45. Ghazali S, Barratt TM (1974) Urinary excretion of calcium and magnesium in children. Arch Dis Child 49:97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  47. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarak Srivastava.

Additional information

Supported by the Sam and Helen Kaplan Research Fund in Pediatric Nephrology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, T., Garg, U., Chan, Y.R. et al. Essentials of laboratory medicine for the nephrology clinician. Pediatr Nephrol 22, 170–182 (2007). https://doi.org/10.1007/s00467-006-0233-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0233-0

Keywords

Navigation