Skip to main content
Log in

Large deformation analysis of rubber based on a reproducing kernel particle method

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

 A nonlinear formulation of the Reproducing Kernel Particle Method (RKPM) is presented for the large deformation analysis of rubber materials which are considered to be hyperelastic and nearly incompressible. In this approach, the global nodal shape functions derived on␣the basis of RKPM are employed in the Galerkin approximation of the variational equation to formulate the discrete equations of a boundary-value hyperelasticity problem. Existence of a solution in RKPM discretized hyperelasticity problem is discussed. A Lagrange multiplier method and a direct transformation method are presented to impose essential boundary conditions. The characteristics of material and spatial kernel functions are discussed. In the present work, the use of a material kernel function assures reproducing kernel stability under large deformation. Several of numerical examples are presented to study the characteristics of RKPM shape functions and to demonstrate the effectiveness of this method in large deformation analysis. Since the current approach employs global shape functions, the method demonstrates a superior performance to the conventional finite element methods in dealing with large material distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JS., Pan, C. & Wu, CT. Large deformation analysis of rubber based on a reproducing kernel particle method. Computational Mechanics 19, 211–227 (1997). https://doi.org/10.1007/s004660050170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004660050170

Keywords

Navigation