Skip to main content
Log in

Polytopal composite finite elements for modeling concrete fracture based on nonlocal damage models

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The paper presents an assumed strain formulation over polygonal meshes to accurately evaluate the strain fields in nonlocal damage models. An assume strained technique based on the Hu-Washizu variational principle is employed to generate a new strain approximation instead of direct derivation from the basis functions and the displacement fields. The underlying idea embedded in arbitrary finite polygons is named as Polytopal composite finite elements (PCFEM). The PCFEM is accordingly applied within the framework of the nonlocal model of continuum damage mechanics to enhance the description of damage behaviours in which highly localized deformations must be captured accurately. This application is helpful to reduce the mesh-sensitivity and elaborate the process-zone of damage models. Several numerical examples are designed for various cases of fracture to discuss and validate the computational capability of the present method through comparison with published numerical results and experimental data from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Falco S, Cola FD, Petrinic N (2017) A method for the generation of 3D representative models of granular based materials. Int J Numer Meth Eng 112(4):338–359

    Article  MathSciNet  Google Scholar 

  2. Talisch C, Pereira A, Paulino GH, Menezes IFI, Carvalho MS (2014) Polygonal finite elements for incompressible fluid flow. Int J Numer Meth Fluids 74(2):134–151

    Article  MathSciNet  Google Scholar 

  3. Ghosh S, Moorthy S (1995) Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method. Comput Methods Appl Mech Eng 121(1–4):373–409

    Article  Google Scholar 

  4. Khoei AR, Yasbolaghi R, Biabanaki SOR (2015) A polygonal-FEM technique in modeling large sliding contact on non-conformal meshes: a study on polygonal shape functions. Eng Comput 32(5):1391–1431

    Article  Google Scholar 

  5. Chi H, da Veiga LB, Paulino GH (2019) A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method. Comput Methods Appl Mech Eng 347:21–58

    Article  MathSciNet  Google Scholar 

  6. Chi H, da Veiga LB, Paulino GH (2017) Some basic formulations of Virtual Element Method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192

    Article  MathSciNet  Google Scholar 

  7. Artioli E, da Veiga LB, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: Part II, inelastic problem. Comput Mech 60(4):643–657

    Article  MathSciNet  Google Scholar 

  8. Ooi ET, Song C, Natarajan S (2017) A scaled boundary finite element formulation with bubble functions for elasto-static analyses of functionally graded materials. Comput Mech 60(6):943–967

    Article  MathSciNet  Google Scholar 

  9. Pramoda ALN, Ooi ET, Song C, Natarajan S (2018) Numerical estimation of stress intensity factors in cracked functionally graded piezoelectric materials: a scaled boundary finite element approach. Compos Struct 206:301–312

    Article  Google Scholar 

  10. Natarajan S, Bordas SP, Ooi ET (2015) Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral finite element methods. Int J Numer Meth Eng 104(13):1173–1199

    Article  MathSciNet  Google Scholar 

  11. Talischi C, Pereira A, Menezes IF, Paulino GH (2015) Gradient correction for polygonal and polyhedral finite elements. Int J Numer Meth Eng 102(3–4):728–747

    Article  MathSciNet  Google Scholar 

  12. Chi H, Talischi C, Pamies OL, Paulino GH (2016) A paradigm for higher-order polygonal elements in finite elasticity using a gradient correction scheme. Comput Methods Appl Mech Eng 306:216–251

    Article  MathSciNet  Google Scholar 

  13. Francis A, Ortiz-Bernardin A, Bordas SP, Natarajan S (2017) Linear smoothed polygonal and polyhedral finite elements. Int J Numer Meth Eng 109(9):1263–1288

    Article  MathSciNet  Google Scholar 

  14. Nguyen-Xuan H (2017) A polygonal finite element method for plate analysis. Comput Struct 188:45–62

    Article  Google Scholar 

  15. Nguyen-Xuan H, Chau KN, Chau KN (2019) Polytopal composite finite elements. Comput Methods Appl Mech Eng 335:405–437

    Article  MathSciNet  Google Scholar 

  16. Pijaudier-Cabot G, Bazant ZP (1987) Nonlocal Damage Theory. J Eng Mech 113(10):1512–1533

    Article  Google Scholar 

  17. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol ASME 106(4):326–330

    Article  Google Scholar 

  18. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocations and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  19. Bazant ZP, Lin FB (1988) Nonlocal smeared cracking model for concrete fracture. J Struct Eng ASCE 114(11):2493–2510

    Article  Google Scholar 

  20. Bazant ZP, Jirasek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech ASCE 128(11):1119–1149

    Article  Google Scholar 

  21. Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12):124301

    Article  Google Scholar 

  22. Lorentz E (2017) A nonlocal damage model for plain concrete consistent with cohesive fracture. Int J Fract 207(2):123–159

    Article  Google Scholar 

  23. Giry C, Dufour F, Mazars J (2011) Stress-based non-local damage model. Int J Solids Struct 48(25–26):3431–3443

    Article  Google Scholar 

  24. Thai TQ, Rabczuk T, Bazilevs Y, Meschke G (2016) A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Comput Methods Appl Mech Eng 304:584–604

    Article  MathSciNet  Google Scholar 

  25. Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MG (1998) Gradient-enhanced damage modelling of concrete fracture. Mech Cohes Frict Mater 3(4):323–342

    Article  Google Scholar 

  26. Velde J, Kowalsky U, Zumendorf T, Dinkler D (2009) 3D-FE-Analysis of CT-specimens including viscoplastic material behavior and nonlocal damage. Comput Mater Sci 46(2):352–357

    Article  Google Scholar 

  27. Simone A, Askes H, Sluys LJ (2004) Incorrect initiation and propagation of failure in non-local and gradient-enhanced media. Int J Solids Struct 41(2):351–363

    Article  Google Scholar 

  28. Bobinski J, Tejchman J (2005) Modelling of concrete behaviour with a non-local continuum damage approach. Arch Hydro Eng Environ Mech 52(3):243–263

    Google Scholar 

  29. Desmorat R, Gatuingt F, Ragueneau F (2007) Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials. Eng Fract Mech 74(10):1539–1560

    Article  Google Scholar 

  30. Jin W, Arson C (2018) Anisotropic nonlocal damage model for materials with intrinsic transverse isotropy. Int J Solids Struct 139–140:29–42

    Article  Google Scholar 

  31. Jackiewicz J (2007) Numerical formulations for nonlocal plasticity problems coupled to damage in the polycrystalline microstructure. Comput Mater Sci 39(1):35–42

    Article  Google Scholar 

  32. Duddu R, Waisman H (2013) A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets. Comput Mech 51(6):961–974

    Article  Google Scholar 

  33. Mediavilla J, Peerlings RHJ, Geers MGD (2006) Discrete crack modelling of ductile fracture driven by non-local softening plasticity. Int J Numer Meth Eng 66(4):661–688

    Article  Google Scholar 

  34. Nguyen-Xuan H (2016) A polytree-based adaptive polygonal finite element method for topology optimization. Int J Numer Meth Eng 110(10):972–1000

    Article  MathSciNet  Google Scholar 

  35. Meyer M, Sayir MB (1995) The elasto-plastic plate with a hole: analytical solutions derived by singular perturbations. Theor Experim Numer Contrib Mech Fluids Solids 46:427–445

    Article  Google Scholar 

  36. Tabarraei A, Sukumar N (2007) Adaptive computations using material forces and residual-based error estimators on quadtree meshes. Comput Methods Appl Mech Eng 196:2657–2680

    Article  MathSciNet  Google Scholar 

  37. Jirasek M (2007) Nonlocal damage mechanics. Revue européenne de génie civil 11:993–1021

    Article  Google Scholar 

  38. Kormeling HA, Reinhardt HW (1983) Determination of the Fracture Energy of Normal Concrete and Epoxy Modified Concrete. Report 5-83-18, Delft University of Technology

  39. Winkler BJ, Hofstetter G, Niederwanger G (2001) Experimental verification of a constitutive model for concrete cracking. Proc Inst Mech Eng Part L J Mat Des Appl 215(2):75–86

    Google Scholar 

  40. Oliver J, Huespe AE, Pulido MDG, Blanco S (2004) Computational modeling of cracking of concrete in strong discontinuity settings. Comput Concrete 1(1):61–76

    Article  Google Scholar 

  41. Galvez JC, Elices M, Guinea GV, Planas J (1998) Mixed mode fracture of concrete under proportional and nonproportional loading. Int J Fract 94(3):267–284

    Article  Google Scholar 

  42. Hordijk DA (1991) Local approach to fatigue of concrete, Dissertation, Delft University of Technology

Download references

Acknowledgements

The support provided by RISE-project BESTOFRAC (734370)-H2020 and H2020 European Research Council (Grant No. 80205) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Nguyen-Xuan or Xiaoying Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Definition of derivatives of the damage evolution function and the equivalent strain

Appendix A: Definition of derivatives of the damage evolution function and the equivalent strain

Derivative of the damage evolution function \(\omega ' = \dfrac{{\partial \omega }}{{\partial \kappa }}\)

$$\begin{aligned} \begin{aligned} \omega '&= \dfrac{{\partial \omega }}{{\partial \kappa }} = \left\{ {\begin{array}{*{20}{l}} 0&{}\quad {{\mathrm{if }\,}\kappa \le {\kappa _0}} \\ {1 - \dfrac{{{\kappa _0}}}{\kappa }\left( {1 - \alpha + \alpha \exp \left( { - \beta \left( {\kappa - {\kappa _0}} \right) } \right) } \right) }&{}{{\mathrm{otherwise}}} \end{array}} \right. \\&= \left\{ {\begin{array}{*{20}{l}} 0&{}\quad {{\mathrm{if }\,}\kappa \le {\kappa _0}} \\ {\dfrac{{{\kappa _0}}}{{{\kappa ^2}}}\left( {1 - \alpha + \alpha \exp \left( { - \beta \left( {\kappa - {\kappa _0}} \right) } \right) } \right) + \dfrac{{{\kappa _0}}}{\kappa }\alpha \beta \exp \left( { - \beta \left( {\kappa - {\kappa _0}} \right) } \right) }&{}\quad {{\mathrm{otherwise}}} \end{array}} \right. \end{aligned} \end{aligned}$$
(A.1)

Derivatives of the equivalent strain with respect to the engineering strain tensor \({\varvec{\eta }} = \dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {\varvec{{\tilde{\varepsilon }} }}}}\)

We first determine values of strain components and principal strain involving z-direction in the case of plane strain and plane stress condition.

  • For plane strain

    $$\begin{aligned}&{{\tilde{\varepsilon }} _{xz}} = {{\tilde{\varepsilon }} _{yz}} = {{\tilde{\varepsilon }} _{zz}} = 0 \end{aligned}$$
    (A.2a)
    $$\begin{aligned}&{\varepsilon _3} = 0 \end{aligned}$$
    (A.2b)
  • For plane stress

    $$\begin{aligned}&{{\tilde{\varepsilon }} _{xz}} = {{\tilde{\varepsilon }} _{yz}} = 0, \,{{\tilde{\varepsilon }} _{zz}} = - \dfrac{\nu }{{1 - \nu }}\left( {{{\tilde{\varepsilon }} _{xx}} + {{\tilde{\varepsilon }} _{yy}}} \right) \end{aligned}$$
    (A.3a)
    $$\begin{aligned}&{\varepsilon _3} = {\tilde{\varepsilon }} _{zz} \end{aligned}$$
    (A.3b)

Derivatives of the equivalent strain computed by Mazars criterion in Eq. and modified von Mises criterion are expressed as

  • For Mazars criterion Principal strain in plane xy

    $$\begin{aligned}&{\varepsilon _1} = a - b \end{aligned}$$
    (A.4a)
    $$\begin{aligned}&{\varepsilon _1} = a + b \end{aligned}$$
    (A.4b)

    with \(a = 0.5\left( {{{\tilde{\varepsilon }} _{xx}} + {{\tilde{\varepsilon }} _{yy}}} \right) \), and \(b = \sqrt{0.5{{\left( {{{\tilde{\varepsilon }} _{xx}} - {{\tilde{\varepsilon }} _{yy}}} \right) }^2} + {\tilde{\varepsilon }} _{xy}^2}\).

    The non-negative part of the principal strains can be written by

    $$\begin{aligned} \left\langle {{\varepsilon _I}} \right\rangle = 0.5\left( {\left| {{\varepsilon _I}} \right| + {\varepsilon _I}} \right) ,{\mathrm{}\,}I = 1,{\mathrm{}}2,{\mathrm{}}3 \end{aligned}$$
    (A.5)

    and components of the principal strain are expressed under a tensor

    $$\begin{aligned} {\mathbf{e}} = \left[ {\left\langle {{\varepsilon _1}} \right\rangle {\mathrm{}}\left\langle {{\varepsilon _2}} \right\rangle {\mathrm{}}\left\langle {{\varepsilon _3}} \right\rangle } \right] \end{aligned}$$
    (A.6)

    By applying the chain rule, we get

    $$\begin{aligned} {\varvec{\eta }} = \dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {\varvec{{\tilde{\varepsilon }} }}}} = \dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {\mathbf{e}}}} \dfrac{{\partial {\mathbf{e}}}}{{\partial {\varvec{{\tilde{\varepsilon }} }}}} \end{aligned}$$
    (A.7)

    in which \(\dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {\mathbf{e}}}} = \dfrac{1}{{{\varepsilon _{eq}}}}\left[ {\left\langle {{\varepsilon _1}} \right\rangle \ {\mathrm{}}\left\langle {{\varepsilon _2}} \right\rangle \ {\mathrm{}}\left\langle {{\varepsilon _3}} \right\rangle } \right] \), \(\dfrac{{\partial {\mathbf{e}}}}{{\partial {\varvec{{\tilde{\varepsilon }} }}}} = \left[ {\dfrac{{\partial \left\langle {{\varepsilon _1}} \right\rangle }}{{\partial {\varvec{{\tilde{\varepsilon }} }}}} \ {\mathrm{}}\dfrac{{\partial \left\langle {{\varepsilon _2}} \right\rangle }}{{\partial {\varvec{{\tilde{\varepsilon }} }}}} \ {\mathrm{}}\dfrac{{\partial \left\langle {{\varepsilon _3}} \right\rangle }}{{\partial {\varvec{{\tilde{\varepsilon }} }}}}} \right] \).

  • For modified von Mises criterion The equivalent strain in Eq. 19 could be written as

    $$\begin{aligned} {\varepsilon _{eq}} = a{I_1} + b\sqrt{cI_1^2 + dJ_2^{'}} \end{aligned}$$
    (A.8)

    with \(a = \dfrac{{k - 1}}{{2k\left( {1 - 2\nu } \right) }}\), \(b = \dfrac{1}{{2k}}\), \(c = \dfrac{{{{\left( {k - 1} \right) }^2}}}{{{{\left( {1 - 2\nu } \right) }^2}}}\), \(d = \dfrac{{12k}}{{{{\left( {1 + \nu } \right) }^2}}}\). The derivatives of \(\varepsilon _{eq}\) could be expressed

    $$\begin{aligned} \dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {\varvec{{\tilde{\varepsilon }} }}}} = {\left[ {\dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}} \ {\mathrm{}}\dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}} \ {\mathrm{}}\dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {{\tilde{\varepsilon }} _{xy}}}}} \right] ^T} \end{aligned}$$
    (A.9)

    where

    $$\begin{aligned} \dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}}= & {} a\dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}} + \dfrac{{0.5b}}{{\sqrt{cI_1^2 + dJ_2^{'}} }}\nonumber \\&\quad \left( {2c{I_1}\dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}} + d\dfrac{{\partial J_2^{'}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}}} \right) \end{aligned}$$
    (A.10)
    $$\begin{aligned} \dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}}= & {} a\dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}} + \dfrac{{0.5b}}{{\sqrt{cI_1^2 + dJ_2^{'}} }}\nonumber \\&\quad \left( {2c{I_1}\dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}} + d\dfrac{{\partial J_2^{'}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}}} \right) \end{aligned}$$
    (A.11)
    $$\begin{aligned} \dfrac{{\partial {\varepsilon _{eq}}}}{{\partial {{\tilde{\varepsilon }} _{xy}}}}= & {} a\dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{xy}}}} + \dfrac{{0.5b}}{{\sqrt{cI_1^2 + dJ_2^{'}} }}\nonumber \\&\quad \left( {2c{I_1}\dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{xy}}}} + d\dfrac{{\partial J_2^{'}}}{{\partial {{\tilde{\varepsilon }} _{xy}}}}} \right) \end{aligned}$$
    (A.12)

    with \(\dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}} = 1 + \dfrac{{\partial {{\tilde{\varepsilon }} _{zz}}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}}\),

    $$\begin{aligned} \dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}}= & {} 1 + \dfrac{{\partial {{\tilde{\varepsilon }} _{zz}}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}}, \\ \dfrac{{\partial {I_1}}}{{\partial {{\tilde{\varepsilon }} _{xy}}}}= & {} 0,\\ \dfrac{{\partial J_2^{'}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}}= & {} \dfrac{1}{3}\left( 2{{\tilde{\varepsilon }} _{xx}} + 2{{\tilde{\varepsilon }} _{zz}}\dfrac{{\partial {{\tilde{\varepsilon }} _{zz}}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}} - {{\tilde{\varepsilon }} _{yy}} - {{\tilde{\varepsilon }} _{zz}}\right. \\&\left. - \dfrac{{\partial {{\tilde{\varepsilon }} _{zz}}}}{{\partial {{\tilde{\varepsilon }} _{xx}}}}\left( {{{\tilde{\varepsilon }} _{xx}} + {{\tilde{\varepsilon }} _{yy}}} \right) \right) \\ \dfrac{{\partial J_2^{'}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}}= & {} \dfrac{1}{3}\left( 2{{\tilde{\varepsilon }} _{yy}} + 2{{\tilde{\varepsilon }} _{zz}}\dfrac{{\partial {{\tilde{\varepsilon }} _{zz}}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}} - {{\tilde{\varepsilon }} _{xx}} - {{\tilde{\varepsilon }} _{zz}} \right. \\&\left. - \dfrac{{\partial {{\tilde{\varepsilon }} _{zz}}}}{{\partial {{\tilde{\varepsilon }} _{yy}}}}\left( {{{\tilde{\varepsilon }} _{xx}} + {{\tilde{\varepsilon }} _{yy}}} \right) \right) \\&\quad \dfrac{{\partial J_2^{'}}}{{\partial {{\tilde{\varepsilon }} _{xy}}}} = 2{{\tilde{\varepsilon }} _{xy}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, H.D., Natarajan, S., Nguyen-Xuan, H. et al. Polytopal composite finite elements for modeling concrete fracture based on nonlocal damage models. Comput Mech 66, 1257–1274 (2020). https://doi.org/10.1007/s00466-020-01898-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01898-y

Keywords

Navigation