Skip to main content
Log in

Weakly intrusive time homogenization technique to deal with pseudo-cyclic coupled thermomechanical problems with uncertainties

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This article is dedicated to the analysis of visco-plastic and damageable structures submitted to thermomechanical loadings embedding some uncertain parameters. In particular, complex time evolutions of the loadings are considered, at two different time scales. An homogenized-in-time model is used to provide kind of a surrogate model for damage evolution analysis. Then a stochastic analysis using polynomial chaos expansion with collocation can be performed. Indeed, though this is a non-intrusive approach, it belongs to the category of many-query problems, so the surrogate model allows to reduce the computational cost in order to be affordable. Focus is herein on the complex time evolutions, the considered test case is mono-dimensional, but up to 300 000 cycles are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North Holland, Amsterdam

    MATH  Google Scholar 

  2. Bhattacharyya M, Dureisseix D, Faverjon B (2020) A unified approach based on temporal homogenisation and cycle jump for thermo-mechanical combined cycle fatigue. Int J Fatigue 131:105320. https://doi.org/10.1016/j.ijfatigue.2019.105320

    Article  Google Scholar 

  3. Bhattacharyya M, Fau A, Desmorat R, Alameddin S, Néron D, Ladevèze P, Nackenhorst U (2019) A kinetic two-scale damage model for high-cycle fatigue simulation using multi-temporal Latin framework. Eur J Mech-A/Solids 77:103808. https://doi.org/10.1016/j.euromechsol.2019.103808

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhattacharyya M, Fau A, Nackenhorst U, Néron D, Ladevèze P (2018) A Latin-based model reduction approach for the simulation of cycling damage. Comput Mech 62(4):725–743. https://doi.org/10.1007/s00466-017-1523-z

    Article  MathSciNet  MATH  Google Scholar 

  5. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(230):2345–2367. https://doi.org/10.1016/j.jcp.2010.12.021

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodin D, Pijaudier-Cabot G, de La Roche C, Piau JM, Chabot A (2004) Continuum damage approach to asphalt concrete fatigue modeling. J Eng Mech 130(6):700–708. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(700)

    Article  Google Scholar 

  7. Boutin C, Wong H (1998) Study of thermosensitive heterogeneous media via space-time homogenisation. Eur J Mech A/Solids 17(6):939–968. https://doi.org/10.1016/S0997-7538(98)90503-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Chapelle O, Vapnik V, Bengio Y (2002) Model selection for small sample regression. Mach Learn 48(1–3):9–23. https://doi.org/10.1023/a:1013943418833

    Article  MATH  Google Scholar 

  9. Chow CL, Wei Y (1991) A model of continuum damage mechanics for fatigue failure. Int J Fract 50(4):301–306. https://doi.org/10.1007/BF00032199

    Article  Google Scholar 

  10. Cognard JY, Ladevèze P (1993) A large time increment approach for cyclic plasticity. Int J Plast 9(2):141–157. https://doi.org/10.1016/0749-6419(93)90026-M

    Article  MATH  Google Scholar 

  11. Cojocaru D, Karlsson AM (2006) A simple numerical method of cycle jumps for cyclically loaded structures. Int J Fatigue 28:1677–1689. https://doi.org/10.1016/j.ijfatigue.2006.01.010

    Article  Google Scholar 

  12. Combescure A, Gravouil A, Herry B (2003) An algorithm to solve transient structural non-linear problems for non-matching time-space domains. Comput Struct 81:1211–1222. https://doi.org/10.1016/S0045-7949(03)00037-3

    Article  MathSciNet  Google Scholar 

  13. Devulder A, Aubry D, Puel G (2010) Two-time scale fatigue modelling: application to damage. Comput Mech 45(6):637–646. https://doi.org/10.1007/s00466-010-0476-2

    Article  MATH  Google Scholar 

  14. Farhat C, Chandesris M (2003) Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int J Numer Methods Eng 58(9):1397–1434. https://doi.org/10.1002/nme.860

    Article  MathSciNet  MATH  Google Scholar 

  15. Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the start of the art for homogeneous materials. Int J Fatigue 20(1):9–34. https://doi.org/10.1016/S0142-1123(97)00081-9

    Article  Google Scholar 

  16. Faverjon B, Ghanem R (2006) Stochastic inversion in acoustic scattering. J Acoust Soc Am 119(6):3577–3588. https://doi.org/10.1121/1.2200149

    Article  Google Scholar 

  17. Fekak FE, Brun M, Gravouil A, Depale B (2017) A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics. Comput Mech 60(1):1–21. https://doi.org/10.1007/s00466-017-1397-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Feyel F (2003) A multilevel finite element method (FE\(^2\)) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244. https://doi.org/10.1016/S0045-7825(03)00348-7

    Article  MATH  Google Scholar 

  19. Feyel F, Chaboche JL (2000) FE\(^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330. https://doi.org/10.1016/S0045-7825(99)00224-8

    Article  MATH  Google Scholar 

  20. Fish J, Bailakanavar M, Powers L, Cook T (2012) Multiscale fatigue life prediction model for heterogeneous materials. Int J Numer Methods Eng 91(10):1087–1104. https://doi.org/10.1002/nme.4307

    Article  MathSciNet  Google Scholar 

  21. Fish J, Oskay C (2005) A nonlocal multiscale fatigue model. Mech Adv Mater Struc 12(6):485–500. https://doi.org/10.1080/15376490500259319

    Article  Google Scholar 

  22. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  Google Scholar 

  23. Guennouni T (1988) On a computational method for cycling loading: the time homogenization. Math Model Numer Anal 22(3):417–455 In French

    Article  MathSciNet  Google Scholar 

  24. Guennouni T, Aubry D (1986) Réponse homogénéisée en temps de structures sous chargements cycliques. Comptes Rendus de l’Académie des. Sci Série 2, Mécanique, Phys, Chimie, Sci de l’univers, Sci de la Terre 303(20):1765–1768 In French

    MATH  Google Scholar 

  25. Huang S, Mahadevan S, Rebba R (2007) Collocation-based stochastic finite element analysis for random field problems. Probab Eng Mech 22(2):194–205. https://doi.org/10.1016/j.probengmech.2006.11.004

    Article  Google Scholar 

  26. Isukapalli SS, Roy A, Georgopoulos PG (1998) Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems. Risk Anal 18(3):351–363. https://doi.org/10.1111/j.1539-6924.1998.tb01301.x

    Article  Google Scholar 

  27. Jourdan F (2006) Numerical wear modeling in dynamics and large strains: application to knee joint prostheses. Wear 261:283–292. https://doi.org/10.1016/j.wear.2005.10.007

    Article  Google Scholar 

  28. Kruch S (1992) Numerical analysis of an engine turbine disk loaded with a large number of thermomechanical cycles. In: Owen DRJ, Oñate E, Hinton E (eds) 3rd International Conference on Computational Plasticity. Pineridge Press, Swansea

  29. Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192:3061–3087. https://doi.org/10.1016/S0045-7825(03)00341-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Lemaire M, Chateauneuf A, Mitteau JC (2009) Structural reliability. ISTE. https://doi.org/10.1002/9780470611708

  31. Lemaitre J (1996) A course on damage mechanics. Springer, Wien

    Book  Google Scholar 

  32. Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  33. Lemaitre J, Desmorat R (2005) Engineering damage mechanics. Springer, New York. https://doi.org/10.1007/b138882

    Book  Google Scholar 

  34. Lemaitre J, Sermage JP, Desmorat R (1999) A two scale damage concept applied to fatigue. Int J Fracture 97(1–4):67–81. https://doi.org/10.1023/A:1018641414428

    Article  Google Scholar 

  35. Lesne PM, Savalle S (1989) An efficient cycles jump technique for viscoplastic structure calculations involving large number of cycles. In: Owen DRJ, Hinton E, Oñate E (eds) 2nd International Conference on Computational Plasticity. Pineridge Press, Swansea, pp. 591–602

  36. Lienhard J IV, Lienhard VJ (2019) A heat transfer textbook, 5th edn. Dover Publications, Mineola

    MATH  Google Scholar 

  37. Maday Y, Turinici G (2005) The parareal in time iterative solver: a further direction to parallel implementation. In: Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 441–448. Springer-Verlag, New York. https://doi.org/10.1007/3-540-26825-1_45

  38. Madge JJ, Leen SB, McColl IR, Shipway PH (2007) Contact-evolution based prediction of fretting fatigue life: effect of slip amplitude. Wear 262:1159–1170. https://doi.org/10.1016/j.wear.2006.11.004

    Article  Google Scholar 

  39. Malachanne E, Jourdan F, Dureisseix D (2011) Numerical model of bone remodeling sensitive to loading frequency through a poroelastic behavior and internal fluid movements. J Mech Behav Biomed Mater 4:849–857. https://doi.org/10.1016/j.jmbbm.2011.03.004

    Article  Google Scholar 

  40. Néron D, Dureisseix D (2008) A computational strategy for thermo-poroelastic structures with a time-space interface coupling. Int J Numer Methods Eng 75(9):1053–1084. https://doi.org/10.1002/nme.2283

    Article  MathSciNet  MATH  Google Scholar 

  41. Oskay C, Fish J (2004) Fatigue life prediction using 2-scale temporal asymptotic homogenization. Int J Numer Methods Eng 61(3):329–359. https://doi.org/10.1002/nme.1069

    Article  MathSciNet  MATH  Google Scholar 

  42. Oskay C, Fish J (2004) Multiscale modeling of fatigue for ductile materials. Int J Multiscale Com 2(3):329–354. https://doi.org/10.1615/intjmultcompeng.v2.i3.10

    Article  MATH  Google Scholar 

  43. Puel G, Aubry D (2012) Material fatigue simulation using a periodic time-homogenisation method. Eur J Comput Mech 21(3–6):312–324. https://doi.org/10.1080/17797179.2012.714853

    Article  MATH  Google Scholar 

  44. Puel G, Aubry D (2014) Efficient fatigue simulation using periodic homogenization with multiple time scales. Int J Multiscale Comput Eng 12(4):291–318. https://doi.org/10.1615/intjmultcompeng.2014010036

    Article  Google Scholar 

  45. Saussine G, Cholet C, Gautier PE, Dubois F, Bohatier C, Moreau JJ (2005) Modelling ballast behaviour under dynamic loading, part 1: a 2D polygonal discrete element method approach. Comput Methods Appl Mech Eng 195(19–22):2841–2859. https://doi.org/10.1016/j.cma.2005.07.006

    Article  MATH  Google Scholar 

  46. Suiker ASJ, de Borst R (2003) A numerical model for the cyclic deterioration of railway tracks. Int J Numer Methods Eng 57:441–470. https://doi.org/10.1002/nme.683

    Article  MATH  Google Scholar 

  47. Takash A, Beringhier M, Hammoud M, Grandidier JC (2018) On the validation of the Proper Generalized Decomposition method with finite element method: 3D heat problem under cyclic loading. In: Mechanism, Machine, Robotics and Mechatronics Sciences, pp. 3–13. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-89911-4_1

  48. Tatang MA, Pan W, Prinn RG, McRae GJ (1997) An efficient method for parametric uncertainty analysis of numerical geophysical models. J Geophys Res: Atmos 102(D18):21925–21932. https://doi.org/10.1029/97jd01654

    Article  Google Scholar 

  49. Wang WM, Sluys LJ (2000) Formulation of an implicit algorithm for finite deformation viscoplasticity. Int J Solids Struct 37(48–50):7329–7348. https://doi.org/10.1016/s0020-7683(00)00201-8

    Article  MATH  Google Scholar 

  50. Yang J, Faverjon B, Dureisseix D, Swider P, Marburg S, Peters H, Kessissoglou N (2016) Prediction of the intramembranous tissue formation during perisprosthetic healing with uncertainties. Part 2. global clinical healing due to combination of random sources. Comput Methods Biomech Biomed Eng 19(13):1387–1394. https://doi.org/10.1080/10255842.2016.1143465

    Article  Google Scholar 

  51. Yang Z, Sun Y, Cui J, Guan T, Yuan Z (2019) A second-order two-scale algorithm for thermo-mechanical coupling problems in quasi-periodic porous materials. Commun Comput Phys. https://doi.org/10.4208/cicp.oa-2017-0252

    Article  MathSciNet  Google Scholar 

  52. Yu Q, Fish J (2002) Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem. Int J Solids Struct 39:6429–6452. https://doi.org/10.1016/S0020-7683(02)00255-X

    Article  MathSciNet  MATH  Google Scholar 

  53. Yu Q, Fish J (2002) Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading. Comput Mech 29(3):199–211. https://doi.org/10.1007/s00466-002-0334-y

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang HW, Zhang S, Bi JY, Schrefler BA (2006) Thermo-mechanical analysis of periodic multiphase materials by a multiscale asymptotic homogenization approach. Int J Numer Methods Eng 69(1):87–113. https://doi.org/10.1002/nme.1757

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Carnot Institute Ingénierie@Lyon (MURMUR project) and the China Scholarship Council (CSC Grant 201801810065) for Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dureisseix.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Detailed forms of the state laws and evolution laws

The considered constitutive relations are [33]:

  • State laws

    $$\begin{aligned}&\varvec{\sigma }=E\left( 1-D\right) \left( \varvec{\varepsilon }^e-\varpi \theta \varvec{\delta }\right) , \end{aligned}$$
    (27a)
    $$\begin{aligned}&\varvec{\beta }=C\varvec{\alpha }, \end{aligned}$$
    (27b)
    $$\begin{aligned}&R=R_{\infty }\left( 1-\exp \left( -\gamma r\right) \right) , \end{aligned}$$
    (27c)
    $$\begin{aligned}&Y_D=\dfrac{\tilde{\sigma }_{eq}^2 R_v}{2E}. \end{aligned}$$
    (27d)

    \(E\) is the Hooke’s tensor which is a function of the modulus of elasticity E and Poisson’s ratio \(\nu \). \(C\) is a tensor containing material parameter C that describes kinematic hardening. \(R_{\infty }\) and \(\gamma \) are material parameters describing isotropic hardening. The triaxiality function \(R_v=\frac{2}{3}\left( 1+\nu \right) +3\left( 1-2\nu \right) \left( \frac{\sigma _h}{\sigma _{eq}}\right) ^2\), where \(\sigma _h=\frac{1}{3}Tr\left( \varvec{\sigma }\right) \) represents the hydrostatic part of the stress tensor, \(\sigma _{eq}\) is the von Mises equivalent stress defined as \(\sigma _{eq}=\sqrt{\frac{3}{2}\varvec{\sigma }^D:\varvec{\sigma }^D}\) with \(\varvec{\sigma }^D=\varvec{\sigma }-\sigma _h\varvec{\delta }\) being the deviatoric stress. The ratio \(\frac{\sigma _h}{\sigma _{eq}}\) in the definition of \(R_v\) is called the triaxiality ratio and \(\tilde{\sigma }_{eq}\) is the equivalent of the effective stress defined as \(\tilde{\sigma }_{eq}=\sqrt{\frac{3}{2}\frac{\varvec{\sigma }^D}{\left( 1-D\right) }:\frac{\varvec{\sigma }^D}{\left( 1-D\right) }}\).

  • Evolution equations

    $$\begin{aligned}&\dot{ \varvec{\varepsilon }}^p= \dfrac{\partial f^p}{\partial \varvec{\sigma }}\left\langle \dfrac{f_p}{K_v} \right\rangle ^{n_v}, \end{aligned}$$
    (28a)
    $$\begin{aligned}&\dot{\varvec{\alpha }}=-\dfrac{\partial f^p}{\partial \varvec{\beta }}\left\langle \dfrac{f_p}{K_v} \right\rangle ^{n_v}, \end{aligned}$$
    (28b)
    $$\begin{aligned}&\dot{r}= -\dfrac{\partial f^p}{\partial R}\left\langle \dfrac{f_p}{K_v} \right\rangle ^{n_v}, \end{aligned}$$
    (28c)
    $$\begin{aligned}&\dot{D}= \left( \dfrac{Y_D}{S}\right) ^s\dfrac{1}{1-D}\left\langle \dfrac{f_p}{K_v} \right\rangle ^{n_v}, \end{aligned}$$
    (28d)

    with the von Mises yield function \(f^p\) delimiting the elastic domain and is defined as

    $$\begin{aligned} f^p= \sqrt{\dfrac{3}{2}\left[ \left( \dfrac{\varvec{\sigma }^D}{1-D}-\varvec{\beta }\right) :\left( \dfrac{\varvec{\sigma }^D}{1-D}-\varvec{\beta }\right) \right] }-R-\sigma _y, \end{aligned}$$
    (29)

    where \(\sigma _y\) is the yield stress.The viscous coefficient \(K_v\) and viscous exponent \(n_v\) are material parameters. The material parameters S and s describe the damage evolution.

Resolution algorithm

The pseudo-code of algorithm 1 is used to solve the two-time-scale problem under concerns. It uses an incremental scheme on the macro time steps, embedding a single Newton-like loop. Inside this last loop, computations are performed on the current micro-time cycle (behind the considered macro time step).

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, C., Bhattacharyya, M., Dureisseix, D. et al. Weakly intrusive time homogenization technique to deal with pseudo-cyclic coupled thermomechanical problems with uncertainties. Comput Mech 66, 669–682 (2020). https://doi.org/10.1007/s00466-020-01871-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01871-9

Keywords

Navigation