Skip to main content
Log in

On the local identifiability of constituent stress–strain laws for hyperelastic composite materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

For natural composite materials such as biological tissues, mechanically characterizing the individual constituents and elucidating their roles in supporting structural integrity has remained experimentally challenging since the constituents can often not be isolated without impairment and require non-standard testing devices. Adopting an inverse viewpoint, we examine, in this article, macroscopic samples whose constituent architecture is accessible and investigate whether it is possible to conclude on the stress–strain behaviour of the individual constituents based on experimental measurements from standard material tests. Focussing on isotropic hyperelastic composites, a direct discretization of the constituents’ strain energy densities in terms of global shape functions is explored. In order to assess the local deterministic identifiability of material parameters near an initial estimate, we adopt a sensitivity-based criterion and determine feasible combinations of candidate experiments without recourse to experimental measurements. Both the local identifiability and attainable reidentification accuracy are investigated in detail for a composite truss and a composite sheet whose force–strain responses in uniaxial or biaxial tension tests, respectively, are mainly determined by the constituents’ volume fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Strictly, homogenization techniques are frequently restricted to microstructured composites whose constituents are arranged on much smaller length scales than the sample extent.

  2. For notational simplicity, we employ the same quadrature points and weights for all \({{\mathcal {E}}}_i\), here. However, in general (and, indeed, in Sect. 5.2), the quadrature approximation may be different for every force–strain curve i.

References

  1. Böl M, Ehret AE, Leichsenring K, Weichert C, Kruse R (2014) On the anisotropy of skeletal muscle tissue under compression. Acta Biomater 10:3225–3234

    Google Scholar 

  2. Morales-Orcajo E, Siebert T, Böl M (2018) Location-dependent correlation between tissue structure and the mechanical behaviour of the urinary bladder. Acta Biomater 75:263–278

    Google Scholar 

  3. Meyer GA, Lieber RL (2011) Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech 44:771–773

    Google Scholar 

  4. Oskay C, Fish J (2008) On calibration and validation of eigendeformation-based multiscale models for failure analysis of heterogeneous systems. Comput Mech 42:181–195

    MATH  Google Scholar 

  5. Schmidt U, Mergheim J, Steinmann P (2012) Multiscale parameter identification. Int J Multiscale Comput Eng 10:327–342

    Google Scholar 

  6. Mazerolles L, Perriere L, Lartigue-Korinek S, Piquet N, Parlier M (2008) Microstructures, crystallography of interfaces, and creep behavior of melt-growth composites. J Eur Ceram Soc 28:2301–2308

    Google Scholar 

  7. Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331

    Google Scholar 

  8. Järvinen TAH, Józsa L, Kannus P, Järvinen TLN, Järvinen M (2002) Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. J Muscle Res Cell Motil 23:245–254

    Google Scholar 

  9. Schüler T, Jänicke R, Steeb H (2016) Nonlinear modeling and computational homogenization of asphalt concrete on the basis of XRCT scans. Constr Build Mater 109:96–108

    Google Scholar 

  10. Vajda S, Rabitz H, Walter É, Lecourtier Y (1989) Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models. Chem Eng Commun 83:191–219

    Google Scholar 

  11. Reid JG (1977) Structural identifiability in linear time-invariant systems. IEEE Trans Autom Control 22:242–246

    MathSciNet  MATH  Google Scholar 

  12. Gokhale NH, Barbone PE, Oberai AA (2008) Solution of the nonlinear elasticity imaging inverse problem: the compressible case. Inverse Probl 24:045010

    MathSciNet  MATH  Google Scholar 

  13. Goenezen S, Barbone P, Oberai AA (2011) Solution of the nonlinear elasticity imaging inverse problem: The incompressible case. Comput Methods Appl Mech Eng 200:1406–1420

    MathSciNet  MATH  Google Scholar 

  14. Schuster T, Wöstehoff A (2014) On the identifiability of the stored energy function of hyperelastic materials from sensor data at the boundary. Inverse Probl 30:105002

    MathSciNet  MATH  Google Scholar 

  15. Seydel J, Schuster T (2017) Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method. Inverse Probl 33:124004

    MathSciNet  MATH  Google Scholar 

  16. Klinge S (2012) Inverse analysis for multiphase nonlinear composites with random microstructure. Int J Multiscale Comput Eng 10:361–373

    Google Scholar 

  17. Klinge S (2012) Parameter identification for two-phase nonlinear composites. Comput Struct 108–109:118–124

    Google Scholar 

  18. Klinge S, Steinmann P (2015) Inverse analysis for heterogeneous materials and its application to viscoelastic curing polymers. Comput Mech 55:603–615

    MathSciNet  MATH  Google Scholar 

  19. Schmidt U, Mergheim J, Steinmann P (2015) Identification of elastoplastic microscopic material parameters within a homogenization scheme. Int J Numer Methods Eng 104:391–407

    MathSciNet  MATH  Google Scholar 

  20. Schmidt U, Steinmann P, Mergheim J (2016) Two-scale elastic parameter identification from noisy macroscopic data. Arch Appl Mech 86:303–320

    Google Scholar 

  21. Hartmann S, Gilbert RR (2018) Identifiability of material parameters in solid mechanics. Arch Appl Mech 88:3–26

    Google Scholar 

  22. Gurtin ME (1981) An introduction to continuum mechanics. Academic Press Inc, New York

    MATH  Google Scholar 

  23. Hartmann S (2001) Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests. Acta Mech 148:129–155

    MATH  Google Scholar 

  24. Ogden RW (1972) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond Ser A Math Phys Sci 326:565–584

    MATH  Google Scholar 

  25. Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    MATH  Google Scholar 

  26. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  27. Dahmen W, Reusken A (2008) Numerik für Ingenieure und Naturwissenschaftler, Springer-Lehrbuch, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  28. Rivlin RS (1956) Large elastic deformations. In: Eirich FR (ed) Rheology: Theory and applications, vol 1. Academic Press Inc, New York, pp 351–385

    Google Scholar 

  29. Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66:754–771

    Google Scholar 

  30. Hartmann S (2001) Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int J Solids Struct 38:7999–8018

    MATH  Google Scholar 

  31. Hartmann S, Neff P (2003) Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int J Solids Struct 40:2767–2791

    MathSciNet  MATH  Google Scholar 

  32. Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40:401–445

    MathSciNet  MATH  Google Scholar 

  33. Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Comput Mech 34:484–502

    MATH  Google Scholar 

  34. Walter É, Pronzato L (1997) Identification of parametric models from experimental data. Springer, Berlin

    MATH  Google Scholar 

  35. Bertsekas D (1996) Constrained optimization and Lagrange multiplier methods. Athena Scientific, Nashua

    MATH  Google Scholar 

  36. Björck Å (1996) Numerical methods for least squares problems. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  37. Rowley CW (2005) Model reduction for fluids, using balanced proper orthogonal decomposition. Int J Bifurc Chaos 15:997–1013

    MathSciNet  MATH  Google Scholar 

  38. Holmes P, Lumley JL, Berkooz G, Rowley CW (2012) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  39. Ljung L, Glad T (1994) On global identifiability for arbitrary model parametrizations. Automatica 30:265–276

    MathSciNet  MATH  Google Scholar 

  40. Thomaseth K, Saccomani MP (2018) Local identifiability analysis of nonlinear ODE models: How to determine all candidate solutions. IFAC-PapersOnLine 51:529–534

    Google Scholar 

  41. Beck JV, Arnold KJ (1977) Parameter estimation in engineering and science. Wiley, New York

    MATH  Google Scholar 

  42. Trefethen LN, Bau D III (1997) Numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  43. Antoulas AC (2005) Approximation of large-scale dynamical systems, vol 6. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  44. Brun R, Reichert P, Künsch HR (2001) Practical identifiability analysis of large environmental simulation models. Water Resour Res 37:1015–1030

    Google Scholar 

  45. Tuncer N, Le TT (2018) Structural and practical identifiability analysis of outbreak models. Math Biosci 299:1–18

    MathSciNet  MATH  Google Scholar 

  46. Hartmann S, Gilbert RR, Sguazzo C (2018) Basic studies in biaxial tensile tests. GAMM-Mitteilungen 41:e201800004

    MathSciNet  Google Scholar 

  47. Simo JC, Pister KS (1984) Remarks on rate constitutive equations for finite deformation problems: Computational implications. Comput Methods Appl Mech Eng 46:201–215

    MATH  Google Scholar 

  48. Klisch SM, Van Dyke TJ, Hoger A (2001) A theory of volumetric growth for compressible elastic biological materials. Math Mech Solids 6:551–575

    MATH  Google Scholar 

  49. Belytschko T, Liu WK, Moran B, Elkhodary K (2008) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the support of Abimathi Siva Subramanian who assisted me in setting up the biaxial tension test case analyzed in Sect. 5.2 as part of her DAAD WISE internship at the Institute of Solid Mechanics in summer 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Sewerin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Evaluating the sensitivities of predicted force resultants

Appendix: Evaluating the sensitivities of predicted force resultants

In this section, we address the semi-analytical evaluation of the sensitivities \(\partial F_i(\varepsilon ; {{\mathbf {w}}})/\partial {{\mathbf {w}}}\) for the ith force–strain curve \(F_i(\varepsilon ; {{\mathbf {w}}})\) and a particular imposed strain \(\varepsilon \in {{\mathcal {E}}}_i\) [5, 19]. Restricting the attention to a displacement-based finite element formulation, we first recall that the Galerkin approximation of the principle of virtual work leads to the following system of nonlinear equations

$$\begin{aligned} {{\mathbf {f}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}}) - {{\mathbf {f}}}^{(ext)}({{\mathbf {d}}}) - \begin{pmatrix} {\mathbf {0}} \\ {\hat{{{\mathbf {a}}}}} \end{pmatrix} = {\mathbf {0}}, \end{aligned}$$
(60)

where \({{\mathbf {f}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}})\) denotes the vector of discrete internal forces, \({{\mathbf {f}}}^{(ext)}({{\mathbf {d}}})\) is the vector of discrete external forces and \({{\mathbf {d}}}\) summarizes all displacement degrees of freedom. In order to account for Dirichlet boundary conditions, \({{\mathbf {d}}}\) is commonly decomposed, after potential reordering, into degrees of freedom \({\hat{{{\mathbf {d}}}}}\) that are prescribed as \({\hat{{{\mathbf {d}}}}}_{\varepsilon }\) on the Dirichlet boundary,

$$\begin{aligned} {\hat{{{\mathbf {d}}}}} = {\hat{{{\mathbf {d}}}}}_{\varepsilon }, \end{aligned}$$
(61)

and into remaining unknown degrees of freedom \({\tilde{{{\mathbf {d}}}}}\),

$$\begin{aligned} {{\mathbf {d}}}= \begin{pmatrix} {\tilde{{{\mathbf {d}}}}} \\ {\hat{{{\mathbf {d}}}}} \end{pmatrix}. \end{aligned}$$
(62)

Here, the subscript \(\varepsilon \) indicates that the prescribed values of \({\hat{{{\mathbf {d}}}}}\) are set with reference to the externally imposed strain \(\varepsilon \). The order of displacement degrees of freedom in Eq. (62) is also reflected in the ordering of the entries in Eq. (60); for subsequent reference, we specifically record the block-partitioned representation of the discrete internal force vector

$$\begin{aligned} {{\mathbf {f}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}}) = \begin{pmatrix} {{\mathbf {f}}}_{{\tilde{{{\mathbf {d}}}}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}}) \\ {{\mathbf {f}}}_{{\hat{{{\mathbf {d}}}}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}}) \end{pmatrix}. \end{aligned}$$
(63)

The Dirichlet boundary conditions in Eq. (61) are enforced by the discrete reaction forces \({\hat{{{\mathbf {a}}}}}\) in Eq. (60). For given constitutive parameters \({{\mathbf {w}}}\) and prescribed Dirichlet displacements \({\hat{{{\mathbf {d}}}}}_{\varepsilon }\), Eqs. (60) and (61) can be solved for the unknown displacement degrees of freedom \({\tilde{{{\mathbf {d}}}}}\) and the discrete reaction forces \({\hat{{{\mathbf {a}}}}}\) that establish equilibrium. The latter are particularly relevant as they determine the predictions of cumulative forces \(F_i(\varepsilon ; {{\mathbf {w}}})\) on the Dirichlet boundary. By consequence, the sensitivities \(\partial F_i(\varepsilon ; {{\mathbf {w}}})/\partial {{\mathbf {w}}}\) may be computed in terms of the sensitivities of the discrete reaction forces \(\partial {\hat{{{\mathbf {a}}}}}({{\mathbf {w}}})/\partial {{\mathbf {w}}}\).

If we consider \(\varepsilon \) and, hence, \({\hat{{{\mathbf {d}}}}}_{\varepsilon }\) as given, then the equilibrium solution \({{\mathbf {d}}}= {{\mathbf {d}}}^{\star }({{\mathbf {w}}})\) is smoothly parameterized by the constitutive parameters \({{\mathbf {w}}}\). Computing the gradient of Eq. (60) at \({{\mathbf {d}}}= {{\mathbf {d}}}^{\star }({{\mathbf {w}}})\) with respect to \({{\mathbf {w}}}\) and taking into account \(\partial {\hat{{{\mathbf {d}}}}}^\star ({{\mathbf {w}}})/\partial {{\mathbf {w}}}= {\mathbf {0}}\) by Eq. (61) yields the following two-step scheme for \(\partial {\hat{{{\mathbf {a}}}}} ({{\mathbf {w}}})/\partial {{\mathbf {w}}}\),

$$\begin{aligned} \left. {{\mathbf {k}}}_{{\tilde{{{\mathbf {d}}}}}{\tilde{{{\mathbf {d}}}}}}({{\mathbf {d}}}; {{\mathbf {w}}})\right| _{{{\mathbf {d}}}^{\star }({{\mathbf {w}}})} \frac{\partial {\tilde{{{\mathbf {d}}}}}^{\star }({{\mathbf {w}}})}{\partial {{\mathbf {w}}}} = - \left. \frac{\partial {{\mathbf {f}}}_{{\tilde{{{\mathbf {d}}}}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}})}{\partial {{\mathbf {w}}}}\right| _{{{\mathbf {d}}}^{\star }({{\mathbf {w}}})} \end{aligned}$$
(64)

and

$$\begin{aligned} \frac{\partial {\hat{{{\mathbf {a}}}}}({{\mathbf {w}}})}{\partial {{\mathbf {w}}}} = \left. \frac{\partial {{\mathbf {f}}}_{{\hat{{{\mathbf {d}}}}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}})}{\partial {{\mathbf {w}}}}\right| _{{{\mathbf {d}}}^{\star }({{\mathbf {w}}})} + \left. {{\mathbf {k}}}_{{\hat{{{\mathbf {d}}}}}{\tilde{{{\mathbf {d}}}}}}({{\mathbf {d}}})\right| _{{{\mathbf {d}}}^{\star }({{\mathbf {w}}})} \frac{\partial {\tilde{{{\mathbf {d}}}}}^{\star }({{\mathbf {w}}})}{\partial {{\mathbf {w}}}}, \end{aligned}$$
(65)

where \({{\mathbf {k}}}({{\mathbf {d}}}; {{\mathbf {w}}})\) represents the tangent stiffness matrix

$$\begin{aligned} \begin{aligned} {{\mathbf {k}}}({{\mathbf {d}}}; {{\mathbf {w}}})&= \begin{pmatrix} {{\mathbf {k}}}_{{\tilde{{{\mathbf {d}}}}}{\tilde{{{\mathbf {d}}}}}}({{\mathbf {d}}}; {{\mathbf {w}}}) &{}{{\mathbf {k}}}_{{\tilde{{{\mathbf {d}}}}}{\hat{{{\mathbf {d}}}}}}({{\mathbf {d}}}; {{\mathbf {w}}}) \\ {{\mathbf {k}}}_{{\hat{{{\mathbf {d}}}}}{\tilde{{{\mathbf {d}}}}}}({{\mathbf {d}}}; {{\mathbf {w}}}) &{}{{\mathbf {k}}}_{{\hat{{{\mathbf {d}}}}}{\hat{{{\mathbf {d}}}}}}({{\mathbf {d}}}; {{\mathbf {w}}}) \end{pmatrix} \\&= \frac{\partial }{\partial {{\mathbf {d}}}} \left( {{\mathbf {f}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}}) - {{\mathbf {f}}}^{(ext)}({{\mathbf {d}}})\right) . \end{aligned} \end{aligned}$$
(66)

Equations (64) and (65) were previously developed by Schmidt et al. [19] and show that, at an equilibrium solution \({{\mathbf {d}}}^\star ({{\mathbf {w}}})\), the evaluation of the sensitivities \(\partial {\hat{{{\mathbf {a}}}}} ({{\mathbf {w}}})/\partial {{\mathbf {w}}}\) requires the solution of n additional linear systems. Furthermore, the sensitivities of the discrete internal force vector \(\partial {{\mathbf {f}}}^{(int)}({{\mathbf {d}}}; {{\mathbf {w}}})/\partial {{\mathbf {w}}}\) appear here; we compute these analytically.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sewerin, F. On the local identifiability of constituent stress–strain laws for hyperelastic composite materials. Comput Mech 65, 853–876 (2020). https://doi.org/10.1007/s00466-019-01798-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01798-w

Keywords

Navigation