Skip to main content
Log in

One-dimensional analysis of thin-walled beams with diaphragms and its application to optimization for stiffness reinforcement

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a method to analyze thin-walled beams with quadrilateral cross sections reinforced with diaphragms using a one-dimensional higher-order beam theory. The effect of a diaphragm is reflected focusing on the increase of static stiffness. The deformations on the beam-interfacing boundary of a thin diaphragm are described by using deformation modes of the beam cross section while the deformations inside the diaphragm are approximated in the form of complete cubic polynomials. By using the principle of minimum potential energy, its stiffness that significantly affects distortional deformation of a thin-walled beam can be considered in the one-dimensional beam analysis. It is shown that the accuracy of the resulting one-dimensional analysis is comparable with that by a shell element based analysis. As a means to demonstrate the usefulness of the present approach for design, position optimization problems of diaphragms for stiffness reinforcement of an automotive side frame are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Huang D, Wang TL, Shahawy M (1998) Vibration of horizontally curved box girder bridges due to vehicles. Comput Struct 68:513–528

    Article  MATH  Google Scholar 

  2. Malen DE (2011) Fundamentals of automobile body structure design. SAE International, Warrendale

    Book  Google Scholar 

  3. Li F, Patton R, Moghal K (2005) The relationship between weight reduction and force distribution for thin wall structures. Thin-Walled Struct 43:591–616

    Article  Google Scholar 

  4. Patton R, Li F, Edwards M (2004) Causes of weight reduction effects of material substitution on constant stiffness components. Thin-Walled Struct 42:613–637

    Article  Google Scholar 

  5. Sunami Y, Yugawa T, Yoshida Y (1990) Analysis of joint rigidity of the automotive body structure—out-of-plane bending of plane-joint structures. JSAE Rev 11(3):59–66

    Google Scholar 

  6. Sunami Y, Yugawa T, Yoshida Y (1988) Analysis of joint rigidity in-plane bending of plane-joint structures. JSAE Rev 9(2):44–51

    Google Scholar 

  7. Senjanović I, Tomašević S, Rudan S, Senjanović T (2008) Role of transverse bulkheads in hull stiffness of large container ships. Eng Struct 30:2492–2509

    Article  Google Scholar 

  8. Senjanović I, Tomašević S, Vladimir N (2009) An advanced theory of thin-walled girders with application to ship vibrations. Mar Struct 22:387–437

    Article  Google Scholar 

  9. Choi S (2016) Unified higher-order beam analysis for multiply-connected thin-walled box beams. Ph.D. Thesis. Seoul National University

  10. Choi S, Kim YY (2016) Analysis of two box beams-joint systems under in-plane bending and axial loads by one-dimensional higher-order beam theory. Int J Solids Struct 90:69–94

    Article  Google Scholar 

  11. Bebiano R, Gonçalves R, Camotim D (2015) A cross-section analysis procedure to rationalize and automate the performance of GBT-based structural analyses. Thin-Walled Struct 92:29–47

    Article  Google Scholar 

  12. De Miranda S, Madeo A, Miletta R, Ubertini F (2014) On the relationship of the shear deformable Generalized Beam Theory with classical and non-classical theories. Int J Solids Struct 51:3698–3709

    Article  Google Scholar 

  13. Ferradi MK, Cespedes X (2014) A new beam element with transversal and warping eigenmodes. Comput Struct 131:12–33

    Article  Google Scholar 

  14. Ferradi MK, Cespedes X, Arquier M (2013) A higher order beam finite element with warping eigenmodes. Eng Struct 46:748–762

    Article  Google Scholar 

  15. Vieira RF, Virtuoso FBE, Pereira EBR (2015) Definition of warping modes within the context of a higher order thin-walled beam model. Comput Struct 147:68–78

    Article  Google Scholar 

  16. Carrera E, Giunta G, Petrolo M (2011) Beam structures: classical and advanced theories. Wiley, New York

    Book  MATH  Google Scholar 

  17. Carrera E, Zappino E, Petrolo M (2013) Analysis of thin-walled structures with longitudinal and transverse stiffeners. J Appl Mech 80:011006

    Article  Google Scholar 

  18. Jang GW, Kim MJ, Kim YY (2012) Analysis of thin-walled straight beams with generally shaped closed sections using numerically determined sectional deformation functions. J Struct Eng 138:1427–1435

    Article  Google Scholar 

  19. Choi IS, Jang GW, Choi S, Shin D, Kim YY (2017) Higher order analysis of thin-walled beams with axially varying quadrilateral cross sections. Comput Struct 179:127–139

    Article  Google Scholar 

  20. Gonçalves R, Ritto-Corrêa M, Camotim D (2010) A new approach to the calculation of cross-section deformation modes in the framework of generalized beam theory. Comput Mech 46:759–781

    Article  MathSciNet  MATH  Google Scholar 

  21. Piccardo G, Ranzi G, Luongo A (2014) A direct approach for evaluation of the conventional modes within the GBT formulation. Thin-Walled Struct 74:133–145

    Article  Google Scholar 

  22. Kim JH, Kim YY (1999) Analysis of thin-walled closed beams with general quadrilateral cross sections. J Appl Mech 66:904–912

    Article  Google Scholar 

  23. Jang GW, Kim YY (2010) Fully coupled 10-degree-of-freedom beam theory for piecewise straight thin-walled beams with general quadrilateral cross sections. J Struct Eng 136:1596–1607

    Article  Google Scholar 

  24. Abaqus (2014) Abaqus/CAE user’s manual. Version 6.14

  25. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    MATH  Google Scholar 

  26. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2014R1A2A1A10051263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Won Jang.

Appendices

Appendix

Shape functions for rigid body cross-section deformations of a general quadrilateral cross section

$$\begin{aligned} \psi _n^{U_x } ( {s_j })= & {} \hbox {sin}({\alpha _j } ),\psi _s^{U_x } ( {s_j })=\cos ({\alpha _j }), \end{aligned}$$
(A1a)
$$\begin{aligned} \psi _n^{U_y } ( {s_j })= & {} -\cos \left( {\alpha _j } \right) ,\psi _s^{U_y } ( {s_j })=\hbox {sin}\left( {\alpha _j } \right) , \end{aligned}$$
(A1b)
$$\begin{aligned} \psi _z^{U_z } ( {s_j })= & {} 1, \end{aligned}$$
(A1c)
$$\begin{aligned} \psi _z^{\theta _x } ( {s_j })= & {} \frac{y_{j+1} -y_j }{l_j }s_j +y_j -y_c ,\quad \left( {y_5 =y_1 } \right) \end{aligned}$$
(A1d)
$$\begin{aligned} \psi _z^{\theta _y } ( {s_j })= & {} -\frac{x_{j+1} -x_j }{l_j }s_j +x_j -x_c ,\quad \left( {x_5 =x_1 } \right) \end{aligned}$$
(A1e)
$$\begin{aligned} \psi _n^{\theta _z } ( {s_j })= & {} s_j -l_j ,\psi _s^{\theta _z } ( {s_j })=r_j , \end{aligned}$$
(A1f)

where \(\alpha _j \) angle between edge j and the x-axis, (\(x_j ,y_j )\) coordinates of corner j, (\(x_c ,y_c )\) coordinates of the geometric center, \(r_j\) distance from the shear center to edge j, \(l_j\) distance from corner j to the point \(N_j\) (\(N_j\): intersection between edge j and the normal line from the shear center to edge j).

In Eq. (A1), \(U_q \) and \(\theta _q ({q=x,y,z} )\) denote rigid-body translations and rotations of the cross section in the q-direction, respectively. Note that shape functions for bending deflection and bending/shear rotations are defined in terms of (xy)-coordinates in Fig. 2, not necessarily in terms of principal coordinates.

Shape functions for torsional and Poisson distortions and corresponding warpings of a rectangular cross section

$$\begin{aligned} \psi _s^{\chi _1 } ({s_i })= & {} -\frac{bh}{b+h},\quad ( {i=1,3}); \nonumber \\ \psi _s^{\chi _1 } ( {s_j })= & {} \frac{bh}{b+h},\quad \left( {j=2,4} \right) , \end{aligned}$$
(A2a)
$$\begin{aligned} \psi _n^{\chi _1}(s_i)= & {} \frac{bh}{b+h}+\frac{2(b-h)}{b+h}s_i-\frac{6}{b+h}s_i^2\nonumber \\&+\frac{4}{b(b+h)}s_i^3, \quad (i=1,3),\nonumber \\ \psi _n^{\chi _1}(s_j)= & {} \frac{bh}{b+h}+\frac{2(b-h)}{b+h}s_j+\frac{6}{b+h}s_j^2\nonumber \\&-\frac{4}{h(b+h)}s_j^3, \quad (j=2,4), \end{aligned}$$
(A2b)
$$\begin{aligned} \psi _s^{\chi _2 } ({s_i })= & {} -\frac{b}{2}+s_i ,\quad ( {i=1,3}); \nonumber \\ \psi _s^{\chi _2 } ( {s_j })= & {} -\frac{h}{2}+s_j ,\quad \left( {j=2,4} \right) ,\end{aligned}$$
(A2c)
$$\begin{aligned} \psi _n^{\chi _2 } ({s_i })= & {} -\frac{h}{2},\quad \left( {i=1,3} \right) ; \nonumber \\ \psi _n^{\chi _2 } ( {s_j })= & {} -\frac{b}{2},\quad \left( {j=2,4} \right) , \end{aligned}$$
(A2d)
$$\begin{aligned} \psi _{s}^{{\chi _{3} }} \left( {s_{i} } \right)= & {} \left( { \!-\! 1} \right) ^{{\frac{{i \!-\! 1}}{2}}} \left( { \!-\! \frac{{b^{2} }}{{12}} \!-\! \frac{h}{2}s_{i} } \right) ,\quad \left( {i \!=\! 1,3} \right) ,\nonumber \\ \psi _{s}^{{\chi _{3} }} \left( {s_{j} } \right)= & {} \left( { - 1} \right) ^{{\frac{{j - 2}}{2}}} \left( {\frac{{bh}}{4} - \frac{h}{2}s_{j} + \frac{1}{2}s_{j}^{2} } \right) ,\quad \left( {j = 2,4} \right) , \nonumber \\ \end{aligned}$$
(A2e)
$$\begin{aligned} \psi _{n}^{{\chi _{3} }} \left( {s_{i} } \right)= & {} \left( { - 1} \right) ^{{\frac{{i - 1}}{2}}} \left( - \frac{{bh}}{4} + \frac{{3h^{2} }}{{2\left( {b + 3h} \right) }}s_{i}\right. \nonumber \\&\left. + \frac{{3h}}{{2\left( {b + 3h} \right) }}s_{i}^{2} - \frac{h}{{b\left( {b + 3h} \right) }}s_{i}^{3} \right) ,\quad \left( {i = 1,3} \right) ,\nonumber \\ \psi _{n}^{{\chi _{3} }} \left( {s_{j} } \right)= & {} \left( { - 1} \right) ^{{\frac{{j - 2}}{2}}} \left( \frac{{b^{2} }}{{12}} + \frac{{3h^{2} }}{{2\left( {b + 3h} \right) }}s_{j} \right. \nonumber \\&\left. - \frac{{3h}}{{2\left( {b + 3h} \right) }}s_{j}^{2} \right) ,\quad \left( {j = 2,4} \right) , \end{aligned}$$
(A2f)
$$\begin{aligned} \psi _{s}^{{\chi _{4} }} \left( {s_{i} } \right)= & {} \left( { - 1} \right) ^{{\frac{{i - 1}}{2}}} \left( {\frac{{bh}}{4} - \frac{h}{2}s_{i} } \right) ,\quad \left( {i = 1,3} \right) ,\nonumber \\ \psi _{s}^{{\chi _{4} }} \left( {s_{j} } \right)= & {} \left( { - 1} \right) ^{{\frac{{j - 2}}{2}}} \nonumber \\&\times \left( {\frac{{h^{2} }}{{12}} - \frac{h}{2}s_{j} + \frac{1}{2}s_{j}^{2} } \right) ,\quad \left( {j = 2,4} \right) , \end{aligned}$$
(A2g)
$$\begin{aligned} \psi _{n}^{{\chi _{4} }} \left( {s_{i} } \right)= & {} \left( { - 1} \right) ^{{\frac{{i - 1}}{2}}} \left( \frac{{h^{2} }}{{12}} + \frac{{3b^{2} }}{{2\left( {3b + h} \right) }}s_{i} \right. \nonumber \\&\left. - \frac{{3b}}{{2\left( {3b + h} \right) }}s_{i}^{2} \right) ,\quad \left( {i = 1,3} \right) , \nonumber \\ \psi _{n}^{{\chi _{4} }} \left( {s_{j} } \right)= & {} \left( { - 1} \right) ^{{\frac{{j - 2}}{2}}} \nonumber \\&\times \left( \frac{{bh}}{4} - \frac{{3b^{2} }}{{2\left( {3b + h} \right) }}s_{j} - \frac{{3b}}{{2\left( {3b + h} \right) }}s_{j}^{2} \right. \nonumber \\&\left. + \frac{b}{{h\left( {3b + h} \right) }}s_{j}^{3} \right) ,\quad \left( {j = 2,4} \right) ,\end{aligned}$$
(A2h)
$$\begin{aligned} \psi _z^{W_1 } ({s_i })= & {} \frac{bh}{4}-\frac{h}{2}s_i ,\quad ({i=1,3});\nonumber \\ \psi _z^{W_1 } ( {s_j })= & {} -\frac{bh}{4}+\frac{b}{2}s_j ,\quad ({j=2,4}), \end{aligned}$$
(A2i)
$$\begin{aligned} \psi _z^{W_2 } ({s_i})= & {} \frac{1}{12}( {b^{2}-bh+h^{2}})\nonumber \\&-\frac{b}{2}s_i +\frac{1}{2}s_i^2 ,\quad \left( {i=1,3} \right) , \nonumber \\ \psi _z^{W_2 } ( {s_j })= & {} \frac{1}{12}( {b^{2}-bh+h^{2}})-\frac{h}{2}s_j \nonumber \\&+\frac{1}{2}s_j^2 ,\quad \left( {j=2,4} \right) , \end{aligned}$$
(A2j)
$$\begin{aligned} \psi _z^{W_3 } ({s_i })= & {} \frac{b^{4}+15bh^{3}}{120\left( {b+3h} \right) }-\frac{2b^{3}+5b^{2}h+5h^{3}}{20({b+3h})}s_i\nonumber \\&+\frac{b}{4}s_i^2 -\frac{1}{6}s_i^3 ,\quad \left( {i=1,3} \right) , \nonumber \\ \psi _z^{W_3 } ( {s_j })= & {} -\frac{b^{4}+15bh^{3}}{120( {b+3h} )}+\frac{bh}{4}s_j \nonumber \\&-\frac{b}{4}s_j^2 ,\quad \left( {j=2,4} \right) , \end{aligned}$$
(A2k)
$$\begin{aligned} \psi _z^{W_4 } ({s_i } )= & {} -\frac{h^{4}+15b^{3}h}{120\left( {3b+h} \right) }+\frac{bh}{4}s_i -\frac{h}{4}s_i^2 ,\quad \left( {i=1,3} \right) , \nonumber \\ \psi _z^{W_4 } ( {s_j })= & {} -\frac{h^{4}+15b^{3}h}{120({3b+h} )}+\frac{5b^{3}+5bh^{2}+2h^{3}}{20({3b+h})}s_j\nonumber \\&-\frac{h}{4}s_j^2 +\frac{1}{6}s_j^3 ,\quad ({j=2,4}), \end{aligned}$$
(A2l)

where b and h denote the width and height of a cross section (see Fig. 1).

Element stiffness matrix of a thin-walled beam with a rectangular cross section

The stiffness matrix of element e is given as

figure a

where l is the length of the element and \(s_i\) are cross-section coefficients defined as

$$\begin{aligned} s_{1}= & {} \frac{h^{2}t(h+3b)}{6},\nonumber \\ s_{2}= & {} \frac{{b^{2}h}^{2}t(b+h)}{24},\quad s_{3}=\frac{8t^{3}}{b+h},\quad s_{4}=2ht, \nonumber \\ s_{5}= & {} 2ht,\quad s_{6}=\frac{hbt(h+b)}{2},\quad s_{7}=\frac{hbt(h+b)}{2},\nonumber \\ s_{8}= & {} \frac{{{2b}^{2}h}^{2}t}{b+h}+\frac{{{2t}^{3}(b^{2}+4bh+h}^{2})}{15(b+h)}, \nonumber \\ s_{9}= & {} 2ht,\quad s_{10}=\frac{hbt(b-h)}{2},\nonumber \\ s_{11}= & {} -\frac{{{2b}^{2}h}^{2}t}{b+h},\quad s_{12}=0. \end{aligned}$$
(A4)

The associated degrees of freedom for the stiffness matrix in Eq. (A3) are

$$\begin{aligned} {\varvec{d}}=\{{U_y ,\theta _x ,\theta _z ,W_1 ,\chi _1 }\}^{T}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J.H., Jang, GW., Shin, D. et al. One-dimensional analysis of thin-walled beams with diaphragms and its application to optimization for stiffness reinforcement. Comput Mech 61, 331–349 (2018). https://doi.org/10.1007/s00466-017-1452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1452-x

Keywords

Navigation