Skip to main content
Log in

A gap element for treating non-matching discrete interfaces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A family of gap elements are developed for treating non-matching interfaces occurring in partitioned analysis of mechanical systems. The proposed gap elements preserve linear and angular momentum and can be specialized to equivalent dual mortar methods, if desired. The proposed gap elements continue to be applicable when the interface gaps disappear, i.e., for flat interface surfaces and are free of energy injection or dissipation. Two dimensional numerical examples are offered to illustrate the basic features of the present gap elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38:989–1012

    Article  MathSciNet  MATH  Google Scholar 

  2. Flemisch B, Puso MA, Wohlmuth BI (2005) A new dual mortar method for curved interfaces: 2D elasticity. Int J Num Methods Eng 63:813–832

    Article  MathSciNet  MATH  Google Scholar 

  3. Weyler R, Oliber J, Sain T, Cante JC (2012) On the contact domain method: a comparison of penalty and Lagrange multiplier implementation. Comput Methods Appl Mech Eng 205–208:68–82

    Article  Google Scholar 

  4. McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Num Methods Eng 48:1525–1547

    Article  MathSciNet  MATH  Google Scholar 

  5. Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244

    Article  MATH  Google Scholar 

  6. Flemisch B, Melenk JM, Wohlmuth BI (2005) Mortar methods with curved interfaces. Appl Num Math 54:339–361

    Article  MathSciNet  MATH  Google Scholar 

  7. Lacour C, Maday Y (1997) Two different approaches for matching nonconforming grids: the mortar element method and the FETI method. BIT 37:720–738

    Article  MathSciNet  MATH  Google Scholar 

  8. Belgacem FB (1999) The mortar finite element method with lagrange multiplier. Num Math 84:173–197

    Article  MATH  Google Scholar 

  9. Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193:4891–4913

    Article  MathSciNet  MATH  Google Scholar 

  10. Li Y, Liu GR, Luan MT, Dai KY, Zhong ZH, Li GY, Han X (2007) Contact analysis for solids based on linearly conforming radial point interpolation method. Comput Methods Appl Mech Eng 39:537–554

    MATH  Google Scholar 

  11. Dohrmann CR, Key SW, Heinstein MW (2000) Methods for connecting dissimilar three-dimensional finite element meshes. Int J Num Methods Eng 47:1057–1080

    Article  MATH  Google Scholar 

  12. Kim HG (2002) Interface element method (IEM) for a partitioned system with non-matching interfaces. Comput Methods Appl Mech Eng 191:3165–3194

    Article  MATH  Google Scholar 

  13. Choa YS, Jun SK, Im SY, Kim HG (2005) An improved interface element with variable nodes for non-matching finite element meshes. Comput Methods Appl Mech Eng 194:3022–3046

    Article  Google Scholar 

  14. Farhat C (1992) Using a reduced number of Lagrange multipliers for assembling parallel incomplete field finite element approximations. Comput Methods Appl Mech Eng 97:333–354

    Article  MATH  Google Scholar 

  15. Rebel G, Park KC, Felippa CA (2002) A contact formulation based on localized Lagrange multipliers:formulation and application to two-dimensional problems. Int J Num Methods Eng 54:263–297

    Article  MathSciNet  MATH  Google Scholar 

  16. Simo JC, Wriggers P, Taylor RL (1985) A perturbed lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180

    Article  MathSciNet  MATH  Google Scholar 

  17. Flemisch B, Wohlmuth BI (2007) Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Comput Methods Appl Mech Eng 196:1589–1602

    Article  MathSciNet  MATH  Google Scholar 

  18. Laursen TA, Chawla V (1997) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Num Methods Eng 40:863–886

    Article  MathSciNet  MATH  Google Scholar 

  19. Hesch C, Betsch P (2009) A mortar method for energy-momentum conserving in frictionless dynamic contact problems. Int J Num Methods Eng 77:1468–1500

    Article  MathSciNet  MATH  Google Scholar 

  20. Hesch C, Betsch P (2011) Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput Mech 48:461–475

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim JY, Youn SK (2012) Isogeometric contact analysis using mortar method. Int J Num Methods Eng 89:1559–1581

    Article  MathSciNet  MATH  Google Scholar 

  22. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20

    Article  MathSciNet  MATH  Google Scholar 

  23. De Lorenzis L, Wriggers P, Hughes TJR (2014) Isogeometric contact: a review. GAMM-Mitt 37(1):85–123

    Article  MathSciNet  Google Scholar 

  24. Park KC, Felippa CA (1998) A variational framework for solution method developments in structural mechanics. J Appl Mech 65:242–249

    Article  MathSciNet  Google Scholar 

  25. Park KC, Felippa CA (2000) A variational principle for the formulation of partitioned structural systems. Int J Num Methods Eng 47:395–418

    Article  MathSciNet  MATH  Google Scholar 

  26. Park KC, Felippa CA, Gumaste UA (2000) A localized version of the method of Lagrange multipliers and its applications. Comput Mech 24:476–490

    Article  MATH  Google Scholar 

  27. Park KC, Felippa CA (2009) The d’Alembert-Lagrange principal equations and applications to floating flexible systems. Int J Num Methods Eng 77:1072–1099

    Article  MathSciNet  MATH  Google Scholar 

  28. Felippa CA. Lecture notes on introduction ot finite element methods. www.colorado.edu/engineering/cas/courses.d/IFEM.d/

  29. Park KC, Felippa CA, Rebel G (2002) A simple algorithm for localized construction of non-matching structural interfaces. Int J Num Methods Eng 53:2117–2142

    Article  MathSciNet  MATH  Google Scholar 

  30. Park KC, Park YH (2004) Partitioned component mode synthesis via a flexibility approach. AIAA J 42:1236–1245

    Article  Google Scholar 

  31. Park KC, Felippa CA, Ohayon R (2001) Partitioned formulation of internal fluid-structure interaction problems via localized Lagrange multipliers. Comput Methods Appl Mech Eng 190(24–25):2989–3007

    Article  MATH  Google Scholar 

  32. Ross M, Sprague MA, Felippa CA, Park KC (2009) Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers and comparison to alternative interface coupling methods. Comput Methods Appl Mech Eng 198(9–12):986–1005

    Article  MATH  Google Scholar 

  33. González JA, Park KC, Lee I, Felippa CA, Ohayon R (2012) Partitioned vibration analysis of internal fluid-structure interaction problems. Int J Num Methods Eng. doi:10.1002/nme.4336

  34. Park KC, Justino MR Jr, Felippa CA (1997) An algebraically partitioned FETI method for parallel structural analysis: algorithm description. Int J Num Methods Eng 40:2717–2737

    Article  MATH  Google Scholar 

  35. Gumaste Udayan, Park KC, Alvin KF (2000) A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems. Comput Mech 24(6):463–475

    Article  MathSciNet  MATH  Google Scholar 

  36. González JA, Park KC (2012) A simple explicit-implicit finite element tearing and interconnecting transient analysis algorithm. Int J Num Methods Eng 89:1203–1226

    Article  MATH  Google Scholar 

  37. González JA, Park KC, Felippa CA (2007) FEM and BEM coupling in elastostatics using localized Lagrange multipliers. Int J Num Methods Eng 69:2058–2074

    Article  MATH  Google Scholar 

  38. Kim G-H, Park KC (2008) A continuum-based modeling of MEMS devices for estimating their resonant frequencies. Comput Methods Appl Mech Eng 198(2):234–244

    Article  MATH  Google Scholar 

  39. Sakamoto H, Park KC (2006) Localized vibration isolation strategy for low-frequency excitations in membrane space structures. J Vib Acoust 128(6):673–802

    Article  Google Scholar 

  40. Park KC, Reich GW, Alvin KF (1998) Structural damage detection using localized flexibilities. J Intell Mater Syst Struct 9(11):911–919

    Article  Google Scholar 

  41. Stefanica D (1999) Domain decomposition methods for mortar finite elements. New York University, New York

    Google Scholar 

  42. Puso MA, Laursen TA, Solberg JM (2008) A segment-to-segment mortar contact method for quadratic elements and large deformations. Comput Methods Appl Mech Eng 197:555–566

    Article  MathSciNet  MATH  Google Scholar 

  43. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  44. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  45. Puso MA, Laursen TA (2003) Mesh tying on curved interfaces in 3D. Eng Comput 20:305–319

    Article  MATH  Google Scholar 

  46. Puso MA (2004) A 3D mortar method for solid mechanics. Int J Num Methods Eng 59:315–336

    Article  MATH  Google Scholar 

  47. Hansbo P, Lovadina C, Perugia I, Sangalli G (2005) A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Num Math 100:91–115

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu YJ, Suna Q, Fan XL (2014) A non-intrusive global/local algorithm with non-matching interface: derivation and numerical validation. Comput Methods Appl Mech Eng 277:81–103

    Article  Google Scholar 

Download references

Acknowledgments

The work of Y. U. Song and S. K. Youn has been partially supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) N0.2010-0028680. The work of K. C. Park has been partially supported by the BK21 Plus Program (21A20131712520) through the National Research Foundation (NRF) funded by the Ministry of Education of Korea as a visiting professor in the Department of Mechanical Engineering, Korea University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Kie Youn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YU., Youn, SK. & Park, K.C. A gap element for treating non-matching discrete interfaces. Comput Mech 56, 551–563 (2015). https://doi.org/10.1007/s00466-015-1186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1186-6

Keywords

Navigation