Skip to main content
Log in

3D BEM for orthotropic frictional contact of piezoelectric bodies

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A numerical methodology to model the three-dimensional frictional contact interaction of piezoelectric materials in presence of electric fields is presented in this work. The boundary element method (BEM) is used in order to compute the electro-elastic influence coefficients. The proposed BEM formulation employs an explicit approach for the evaluation of the corresponding fundamental solutions, which are valid for general anisotropic behaviour meanwhile mathematical degeneracies in the context of the Stroh formalism are allowed. The contact methodology is based on an augmented Lagrangian formulation and uses an iterative Uzawa scheme of resolution. An orthotropic frictional law is implemented in this work so anisotropy is present both in the bulk and in the surface. The methodology is validated by comparison with benchmark analytical solutions. Some additional examples are presented and discussed in detail, revealing the importance of considering orthotropic frictional contact conditions in the electro-elastic analysis of this kind of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cady WG (1946) Piezoelectricity. Mc Graw Hill, New York

    Google Scholar 

  2. Mindlin R (1969) Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Int J Solids Struct 4:1197–1213

    Article  Google Scholar 

  3. Mindlin R (1972) Elasticity, piezoelasticity and crystal lattice dynamics. J Elast 4:217–280

    Article  Google Scholar 

  4. Yang JS, Batra RC (1994) Free vibrations of a piezoelectric body. J Elast 34:239–254

    Article  MATH  Google Scholar 

  5. Batra RC, Yang JS (1995) Saint-Venants principle in linear piezoelectricity. J Elast 38:209–218

    Article  MathSciNet  MATH  Google Scholar 

  6. Batra RC, DellIsola F, Vidoli S (1998) A second order solution of Saint-Venants problem for a piezoelectric circular bar using Signorinis perturbation method. J Elast 16:75–90

    Article  MathSciNet  Google Scholar 

  7. Ikeda T (1996) Fundamentals of piezoelectricity. Oxford Science Publications, Oxford

    Google Scholar 

  8. Ding HJ, Chen WQ (2001) Three dimensional problems of piezoelasticity. Nova Science Publishers, New York

    Google Scholar 

  9. Yang J, Yang JS (2005) An introduction to the theory of piezoelectricity. Springer, New York

    MATH  Google Scholar 

  10. Giannakopoulos AE, Suresh S (1999) Theory of indentation of piezoelectric materials. Acta Mater 47:2153–2164

    Article  Google Scholar 

  11. Chen WQ (2000) On piezoelastic contact problem for a smooth punch. Int J Solids Struct 37:2331–2340

    Article  MATH  Google Scholar 

  12. Li XY, Wang MZ (2006) Hertzian contact of anisotropic piezoelectric bodies. J Elast 84:153–166

    Article  MATH  Google Scholar 

  13. Ramirez G, Heyliger P (2003) Frictionless contact in a layered piezoelectric half-space. Smart Mater Struct 12:612–625

    Article  Google Scholar 

  14. Ramirez G (2006) Frictionless contact in a layered piezoelectric media characterized by complex eigenvalues. Smart Mater Struct 15:1287–1295

    Article  MathSciNet  Google Scholar 

  15. Wang BL, Han JC (2006) A circular indenter on a piezoelectric layer. Arch Appl Mech 76:367–379

    Article  MATH  Google Scholar 

  16. Wang BL, Zhang HY, Han JC, Du SY, Sun YG (2008) Electromechanical behaviour of a finite piezoelectric layer under a flat punch. Int J Solids Struct 45:6384–6398

    Article  MATH  Google Scholar 

  17. Wang JH, Chen CQ, Lu TJ (2008) Indentation responses of piezoelectric films. J Mech Phys Solids 56:3331–3351

    Article  MATH  Google Scholar 

  18. Wang JH, Chen CQ, Lu TJ (2011) Indentation responses of piezoelectric films ideally bonded to an elastic substrate. Int J Solids Struct 48:2743–2754

    Article  Google Scholar 

  19. Wu YF, Yu HY, Chen WQ (2012) Mechanics of indentation of piezoelectric thin films on elastic substrate. Int J Solids Struct 49:95–110

    Article  Google Scholar 

  20. Arty M, Mark K, Edgar K, Sergei VK (2009) Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. Int J Eng Sci 47:221–239

    Article  Google Scholar 

  21. Makagon A, Kachanov M, Karapetian E, Kalinin SV (2009) Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. Int J Eng Sci 47:221–239

    Article  Google Scholar 

  22. Migorski S, Ochal A, Sofonea M (2011) Analysis of a quasistatic contact problem for piezoelectric materials. J Math Anal Appl 382:701–713

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou YT, Lee KY (2012) Theory of moving contact of anisotropic piezoelectric materials via real fundamental solutions approach. Eur J Mech A Solids 35:22–36

    Article  MathSciNet  Google Scholar 

  24. Ma J, Ke LL, Wang YS (2014) Electro-mechanical sliding frictional contact of a piezoelectric half-plane under a rigid conducting punch. Appl Math Model 38:5471–5489

    Article  MathSciNet  Google Scholar 

  25. Han W, Sofonea M, Kazmi K (2007) Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials. Comput Methods Appl Mech Eng 196:3915–3926

    Article  MathSciNet  MATH  Google Scholar 

  26. Barboteu M, Fernndez JR, Ouafik Y (2008) Numerical analysis of two frictionless elastic-piezoelectric contact problems. J Math Anal Appl 339:905–917

    Article  MathSciNet  MATH  Google Scholar 

  27. Sofonea M, Essoufi EH (2004) Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv Math Sci Appl 14:25–40

    MathSciNet  Google Scholar 

  28. Sofonea M, Kazmi K, Barboteu M, Han WM (2012) Analysis and numerical solution of a piezoelectric frictional contact problem. Appl Math Model 36:4483–4501

    Article  MathSciNet  MATH  Google Scholar 

  29. Barboteu M, Fernández JR, Tarraf R (2008) Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity. Comput Methods Appl Mech Eng 197:3724–3732

    Article  MATH  Google Scholar 

  30. Barboteu M, Sofonea M (2009) Solvability of a dynamic contact problem between a piezoelectric body and a conductive foundation. Appl Math Comput 215:2978–2991

    Article  MathSciNet  MATH  Google Scholar 

  31. Barboteu M, Sofonea M (2009) Modeling and analysis of the unilateral contact of a piezoelectric body with a conductive support. J Math Anal Appl 358:110–124

    Article  MathSciNet  MATH  Google Scholar 

  32. Hüeber S, Matei A, Wohlmuth B (2013) A contact problem for electro-elastic materials. ZAMM-Z Angew Math Me 93:789–800

    Article  MATH  Google Scholar 

  33. Dunn ML, Wienecke HA (1996) Greens functions for transversely isotropic piezoelectric solids. Int J Solids Struct 33:45714581

    Article  Google Scholar 

  34. Pan E, Tonon F (2000) Three-dimensional Greens functions in anisotropic piezoelectric solids. Int J Solids Struct 37:943958

    Google Scholar 

  35. Akamatsu M, Tanuma K (1997) Greens function of anisotropic piezoelectricity. Proc R Soc Lond A 453:473487

    Article  MathSciNet  Google Scholar 

  36. Buroni FC, Sáez A (2010) Three-dimensional Green’s function and its derivative for materials with general anisotropic magneto-electro-elastic coupling. Proc R Soc A 466:515

    Article  MATH  Google Scholar 

  37. Alart P, Curnier A (1991) A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng 92:353–375

    Article  MathSciNet  MATH  Google Scholar 

  38. Christensen PW, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42:145–173

    Article  MATH  Google Scholar 

  39. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  40. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  41. Wriggers P (2002) Computational contact mechanics. J. Wiley & Sons, Chichester

    Google Scholar 

  42. Rodríguez-Tembleque L, Abascal R, Aliabadi MH (2012) Anisotropic wear framework for 3D contact and rolling problems. Comput Methods Appl Mech Eng 241:1–19

    Article  Google Scholar 

  43. Rodríguez-Tembleque L, Abascal R (2013) Fast FE-BEM algorithms for orthotropic frictional contact. Int J Numer Methods Eng 94:687–707

    Article  Google Scholar 

  44. Hill LR, Farris TN (1998) Three-dimensional piezoelectric boundary element method. AIAA J 36:102–108

    Article  MATH  Google Scholar 

  45. González JA, Park KC, Felippa CA, Abascal R (2008) A formulation based on localized Lagrange multipliers for BEM-FEM coupling in contact problems. Comput Methods Appl Mech Eng 197:623–640

    Article  MATH  Google Scholar 

  46. Joli P, Feng Z-Q (2008) Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework. Int J Numer Methods Eng 73:317–330

    Article  MathSciNet  MATH  Google Scholar 

  47. Farhat C, Roux F (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205–1227

    Article  MATH  Google Scholar 

  48. Langer U, Steinbach O (2003) Boundary element tearing and interconnecting methods. Computing 71:205–228

    Article  MathSciNet  MATH  Google Scholar 

  49. Bonnet M, Maier G, Polizzotto C (1998) Symmetric Galerkin boundary element method. ASME Appl Mech Rev 51:669–704

    Article  Google Scholar 

  50. Bouchala J, Dostál Z, Sadowská M (2008) Theoretically supported scalable BETI method for variational inequalities. Computing 82:53–75

    Article  MathSciNet  MATH  Google Scholar 

  51. Bouchala J, Dostál Z, Sadowská M (2009) Scalable total BETI based algorithm for 3D coercive contact problems of linear elastostatics. Computing 85:189–217

    Article  MathSciNet  MATH  Google Scholar 

  52. González JA, Rodríguez-Tembleque L, Park KC, Abascal R (2012) The nsBETI method: an extension of the FETI metohd to non-symmetrical BEM-FEM coupled problems. Int J Numer Methods Eng 94:687–707

    Google Scholar 

  53. Barnett DM, Lothe J (1975) Dislocations and line charges in anisotropic piezoelectric insulators. Phys Stat Sol (b) 67:105–111

    Article  Google Scholar 

  54. Ting TCT (1996) Anisotropic elasticity. Theory and applications. Oxford University Press, Oxford

    MATH  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Ministerio de Ciencia e Innovación, Spain, and by the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (Spain), through the research Projects: DPI\(2013-43267\)-P and P12-TEP-2546, which were co-funded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rodríguez-Tembleque.

Appendices

Appendix 1: Barnett & Lothe representation

As proposed by Barnett & Lothe [53], the linear PE problem may be formulated in an elastic-like fashion by considering a generalized displacement vector extended with the electric potential as

$$\begin{aligned} u_{J}=\left\{ \begin{array} [c]{ll}u_{j} &{} \quad J\leqslant 3\\ \varphi &{} \quad J=4, \end{array} \right. \end{aligned}$$
(35)

a traction vector extended with electric charge flux as

$$\begin{aligned} t_{J}=\left\{ \begin{array} [c]{ll} t_{j} &{} \quad J\leqslant 3\\ q &{} \quad J=4, \end{array} \right. \end{aligned}$$
(36)

a stress tensor extended with the electric displacements as

$$\begin{aligned} \sigma _{iJ}=\left\{ \begin{array} [c]{ll} \sigma _{ij} &{} \quad J\leqslant 3\\ D_{i} &{} \quad J=4, \end{array} \right. \end{aligned}$$
(37)

and an extended elasticity tensor with the following components

$$\begin{aligned} C_{iJKm}=\left\{ \begin{array} [c]{ll} c_{ijkm} &{} \quad J,K\leqslant 3\\ e_{mij} &{} \quad J\leqslant 3;\;K=4\\ e_{ikm} &{} \quad J=4;\;K\leqslant 3\\ -\epsilon _{im} &{} \quad J,K=4. \end{array} \right. \end{aligned}$$
(38)

Symmetry \(C_{iJKm}=C_{mKJi}\) is satisfied by virtue of (4). In the above definitions the lowercase (elastic) and uppercase (extended) subscripts take values 1, 2, 3 and 1, 2, 3 (elastic), 4 (electric), respectively. Then, with this compact representation the extended equilibrium Eq. (1) can be expressed as

$$\begin{aligned} \sigma _{iJ,i}=0 \end{aligned}$$
(39)

and the constitutive Eqs. (3) as

$$\begin{aligned} \sigma _{iJ}=C_{iJKm}u_{K,m}. \end{aligned}$$
(40)

So the Barnett & Lothe representation allows also to arrive to a PE BEM formulation in a very compact way.

Appendix 2: Fundamental solutions

The explicit fundamental solutions recently proposed by Buroni & Sáez [36] have been implemented in the presented formulation and they are briefly described in this appendix. In homogeneous media they depend on the relative vector \(\mathbf {x}-\mathbf {x'}\), henceforth, for simplicity, it is considered that the Cartesian coordinate system \((x_i)\) (\(i=1,2,3\)) has the origin at the collocation point \(\mathbf {x'}\).

Extended displacement fundamental solution can be expressed as a singular term by a modulation function \(\mathbf {H}\) as

$$\begin{aligned} \check{U}_{JK}(\mathbf x )=\frac{1}{4\pi r}H_{JK}(\mathbf x ) \end{aligned}$$
(41)

where \(\mathbf {x}=r\hat{\mathbf {e}}\) with \(r=|\mathbf {x}|\ne 0\). The modulation function \(H_{JK}(\mathbf {x})\) depends on the direction of \(\mathbf {x}\) but not on its modulus, so \(H_{JK}(\mathbf {x})=H_{JK}(\hat{\mathbf {e}})\) and that is one of the three extended Barnett-Lothe tensors which is symmetric and \(\mathbf {H}(\hat{\mathbf {e}})=\mathbf {H}(\hat{\mathbf {-e}})\). Hence, \(\check{\mathbf {U}}(\mathbf {x})\) is also symmetric and \(\check{\mathbf {U}}(\mathbf {x})=\check{\mathbf {U}}(\mathbf {-x})\). The tensor \(H_{JK}\) can be evaluated as

$$\begin{aligned} H_{JK}(\hat{\mathbf {e}})=\frac{1}{\pi }\int _{-\infty }^{+\infty }\varGamma _{JK}^{-1}(p)dp, \end{aligned}$$
(42)

with

$$\begin{aligned} \varGamma _{JK}(p)=Q_{JK}+(R_{JK}+R_{KJ})p+T_{JK}p^2, \end{aligned}$$
(43)

being

$$\begin{aligned}&Q_{JK}=C_{iJKm}n_in_m,\quad R_{JK}=C_{iJKm}n_im_m,\quad \nonumber \\&T_{JK}=C_{iJKm}m_im_m, \end{aligned}$$
(44)

where \(n_i\) and \(m_i\) are the components of any two mutually orthogonal unit vectors such that \((\mathbf {n},\mathbf {m},\hat{\mathbf {e}})\) is a right-handed triad. Note that \(Q_{JK}\) and \(T_{JK}\) are symmetric like their elastic counterparts [54], but the PE coupling induces a loss of positive definiteness of these matrices. However, \(Q_{JK}\), \(T_{JK}\) and \(\varGamma _{JK}\) are non-singular so that their inverses are guaranteed. Moreover, \(\mathbf {H}\) and \(\check{\mathbf {U}}\) are independent of the choice of the unit vectors \(\mathbf {m}\) and \(\mathbf {n}\) on the oblique plane. The kernel in Eq. (42) is a single-valued holomorphic function in the upper complex half-plane except at four complex poles with positive imaginary part and their conjugates that corresponds to the roots of the eight-order polynomial characteristic equation

$$\begin{aligned} |\varvec{\varGamma }(p)|=0. \end{aligned}$$
(45)

The determinant in (45) can be factorized as

$$\begin{aligned} |\varvec{\varGamma }(p)|=|\mathbf {T}| \prod _{\xi =1}^4 (p-p_\xi )(p-\bar{p}_\xi ), \end{aligned}$$
(46)

where \(p_\xi \) are known as the Stroh’s eigenvalues and the bar over \(p_\xi \) denotes complex conjugate and \(\mathbf {T}\) as defined in Eq. (44). Therefore, the integration in Eq.  (42) can be done by the Cauchy’s residue theory. At most, there are N (\(1\leqq N\leqq 4\)) distinct Stroh’s eigenvalues \(p_\alpha \) of \(m _\alpha \)-multiplicity. Hence, a general expression, valid for degenerate and non-degenerate materials, of the extended Barnett-Lothe tensor \(H_{JK}\) is obtained as [36]

$$\begin{aligned}&H_{JK}(\hat{\mathbf {e}})=\frac{2 \mathrm {i}}{|\mathbf {T}|}\sum _{\alpha =1}^N\frac{1}{(m _\alpha -1)!}\nonumber \\&\quad \left[ \frac{d^{m _\alpha -1}}{dp^{m _\alpha -1}} \left\{ \!\frac{\hat{\varGamma }_{JK}(p)}{(p-\bar{p}_\alpha )^{m_\alpha } \prod \limits _{\begin{array}{c} \xi =1\\ \xi \ne \alpha \end{array}}^N [(p-p_\xi )(p-\bar{p}_\xi )]^{m_\xi }} \right\} \!\right] _{at\,p=p_\alpha }.\nonumber \\ \end{aligned}$$
(47)

where \(\hat{\varGamma }_{JK}\) is the adjoint of \(\varGamma _{JK}\) defined as \(\varGamma _{PJ}(p)\hat{\varGamma }_{JK}(p)\!=|\varvec{\varGamma }(p)|\delta _{PK} \) and \(\mathrm {i}=\sqrt{-1}\).

The extended traction fundamental solution follows from the derivative of the extended displacement fundamental solution as

$$\begin{aligned} \check{T}_{JK}=C_{iJMl}\check{U}_{MK,l}\nu _i \end{aligned}$$
(48)

where \(\nu _i\) are the components of the external unit normal vector to the boundary \(\partial \varOmega \) at point \(\mathbf {x}\). In similar way to Eq. (41), the derivative of the displacement fundamental solution may be expressed as

$$\begin{aligned} \check{U}_{PJ,q}(\mathbf {x})=\frac{1}{4 \pi r^2}\tilde{U}_{PJq}(\hat{\mathbf {e}}) \end{aligned}$$
(49)

where the modulation function is

$$\begin{aligned} \tilde{U}_{PJq}(\hat{\mathbf {e}})= & {} -\hat{e}_{q}H_{PJ}\nonumber \\&+\frac{C_{rKMs}}{\pi }\left( M_{qsPKMJ}\hat{e}_r+M_{qrPKMJ}\hat{e}_s\right) , \end{aligned}$$
(50)

that only depends on the orientation of \(\mathbf {x}\) (\(\hat{\mathbf {e}}\)) but not on its modulus r. The \(M_{ijPKMN}\) components have the following integral representation in terms of the parameter p

$$\begin{aligned}&M_{ijPKMN}(\hat{\mathbf {e}})\nonumber \\&\quad =\frac{1}{|\mathbf {T}|^2}\int _{-\infty }^{+\infty }\frac{\varPhi _{ijPKMN}(p)}{(p-{p}_1)^2(p-{p}_2)^2(p-{p}_3)^2(p-{p}_4)^2}dp,\nonumber \\ \end{aligned}$$
(51)

where \(\mathbf {T}\) has been previously defined in (44), \(p_\alpha \) are the Stroh’s eigenvalues and the function

$$\begin{aligned} \varPhi _{ijPKMN}(p):=\frac{\tilde{B}_{ij}(p)\hat{\varGamma }_{PK}(p)\hat{\varGamma }_{MN}(p)}{(p-\bar{p}_1)^2(p-\bar{p}_2)^2(p-\bar{p}_3)^2(p-\bar{p}_4)^2} \end{aligned}$$
(52)

has been introduced together with definition

$$\begin{aligned} \tilde{B}_{ij}:=n_in_j+(n_im_j+m_in_j)p+m_im_jp^2. \end{aligned}$$
(53)

\(\varPhi _{ijPKMN}(p)\) is a holomorphic function everywhere in the upper half-plane and the kernel in the integral (51) has four complex-double poles with positive imaginary part corresponding to the roots of \( |\varvec{\varGamma }(p)|^2=0\) (no poles on the real axis). Hence, like in the integration of Eq. (42), a general expression both for degenerate and non-degenerate materials is derived for the \(M_{ijPKMN}\) components to yield [36]

$$\begin{aligned}&M_{ijPKMN}(\hat{\mathbf {e}})=\frac{2\pi \mathrm {i}}{|\mathbf {T}|^2}\sum _{\alpha =1}^N\frac{1}{(2m _\alpha -1)!}\nonumber \\&\quad \left[ \frac{d^{2m _\alpha -1}}{dp^{2m _\alpha -1}}\left\{ \frac{\varPhi _{ijPKMN}(p)}{\prod \limits _{\begin{array}{c} \xi =1\\ \xi \ne \alpha \end{array}}^N [(p-p_\xi )]^{2m_\xi }}\right\} \right] _{at\,p=p_\alpha }. \end{aligned}$$
(54)

Because of the symmetry of \(\tilde{B}_{ij}\) and the adjoint matrix \(\varvec{\hat{\varGamma }}\), the components \(M_{qsPKMJ}\) satisfy the following symmetry conditions

$$\begin{aligned} M_{qsPKMJ}= & {} M_{qsMJPK}=M_{qsKPMJ}=M_{qsPKJM}, \end{aligned}$$
(55)
$$\begin{aligned} M_{qsPKMJ}= & {} M_{sqPKMJ}. \end{aligned}$$
(56)

These symmetries allow considerable reduction in the number of components \(M_{qsPKMJ}\) to be calculated, and must be considered in the numerical implementation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Tembleque, L., Buroni, F.C. & Sáez, A. 3D BEM for orthotropic frictional contact of piezoelectric bodies. Comput Mech 56, 491–502 (2015). https://doi.org/10.1007/s00466-015-1183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1183-9

Keywords

Navigation