Skip to main content
Log in

Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and \(YZ\beta \) shock-capturing

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The \(YZ\beta \) shock-capturing technique, which is residual-based, was introduced in conjunction with the Streamline-Upwind/Petrov–Galerkin (SUPG) formulation of compressible flows in conservation variables. It was later also combined with the variable subgrid scale (V-SGS) formulation of compressible flows in conservation variables and successfully tested on 2D and 3D computation of inviscid flows with shocks. In this paper we extend that combined method to inviscid flow computations with particle tracking and particle–shock interaction. Particles are tracked individually, assuming one-way dependence between the particle dynamics and the flow. We present two steady-state test computations with particle–shock interaction, one in 2D and one in 3D, and show that the overall method is effective in particle tracking and particle–shock interaction analysis in compressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sommerfeld M (1985) The unsteadiness of shock waves propagating though gas-particle mixtures. Exp Fluids 3:197–206

    Article  Google Scholar 

  2. Boiko VM, Kiselev VP, Kiselev SP, Papyrin AN, Poplavsky SV, Fomin VM (1996) Shock wave interaction with a cloud of particles. Shock Waves 7:275–285

    Article  Google Scholar 

  3. Chang EJ, Kailasanath K (2003) Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12:333–341

    Article  MATH  Google Scholar 

  4. Hughes TJR, Brooks AN (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows, AMD, vol 34. ASME, New York, pp 19–35

    Google Scholar 

  5. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  6. Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting, AIAA Paper 83–0125, Reno, Nevada

  7. Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284. doi:10.1016/0045-7825(85)90157-9

    Article  MATH  MathSciNet  Google Scholar 

  8. Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI. convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems. Comput Methods Appl Mech Eng 63:97–112

    Article  MATH  MathSciNet  Google Scholar 

  9. Le Beau GJ, Tezduyar TE (1991) Finite element computation of compressible flows with the SUPG formulation. In: Dhaubhadel MN, Engelman MS, Reddy JN (eds) Advances in finiteelement analysis in fluid dynamics, FED-vol 123. ASME, New York, pp 21–27

  10. Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422. doi:10.1016/0045-7825(93)90033-T

    Article  MATH  Google Scholar 

  11. Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces, Volume 3: Fluids, Chapter 17. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics. Wiley, West Sussex

    Google Scholar 

  12. Tezduyar TE (2004) Determination of the stabilization and shock-capturing parameters in SUPG formulation of compressible flows. In: Proceedings of the European Congress on computational methods in applied sciences and engineering, ECCOMAS 2004 (CD-ROM), Jyvaskyla, Finland

  13. Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632. doi:10.1016/j.cma.2005.05.032

    Article  MATH  MathSciNet  Google Scholar 

  14. Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ\(\beta \) shock-capturing. Comput Fluids 36:147–159. doi:10.1016/j.compfluid.2005.07.009

    Article  MATH  Google Scholar 

  15. Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta \) shock-capturing. Comput Mech 38:469–481. doi:10.1007/s00466-005-0025-6

    Article  MATH  Google Scholar 

  16. Corsini A, Rispoli F, Santoriello A (2005) A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput Methods Appl Mech Eng 194:4797–4823

    Article  MATH  MathSciNet  Google Scholar 

  17. Hughes TJR (1995) Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401

    Article  MATH  Google Scholar 

  18. Rispoli F, Saavedra R (2006) A stabilized finite element method based on SGS models for compressible flows. Comput Methods Appl Mech Eng 196:652–664

    Article  MATH  Google Scholar 

  19. Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the V-SGS stabilization and YZ\(\beta \) shock-capturing. Int J Numer Methods Fluids 54:695–706. doi:10.1002/fld.1447

    Article  MATH  MathSciNet  Google Scholar 

  20. Rispoli F, Saavedra R, Menichini F, Tezduyar TE (2009) Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ\(\beta \) shock-capturing. J Appl Mech 76:021209. doi:10.1115/1.3057496

    Article  Google Scholar 

  21. Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZ\(\beta \) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593–608. doi:10.1002/fld.1484

    Article  MATH  MathSciNet  Google Scholar 

  22. Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137– 4152

    Article  MATH  MathSciNet  Google Scholar 

  23. Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79: 010905

    Article  Google Scholar 

  24. Kees CE, Akkerman I, Farthing MW, Bazilevs Y (2011) A conservative level set method suitable for variable-order approximations and unstructured meshes. J Comput Phys 230:4536– 4558

    Article  MATH  MathSciNet  Google Scholar 

  25. Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727

    Article  MATH  Google Scholar 

  26. Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZ\(\beta \) shock-capturing. J Appl Mech 76:021208. doi:10.1115/1.3062968

    Article  Google Scholar 

  27. Corsini A, Rispoli F, Sheard AG, Takizawa K, Tezduyar TE, Venturini P (2014) A variational multiscale method for particle-cloud tracking in turbomachinery flows. Comput Mech 54:1191–1202. doi:10.1007/s00466-014-1050-0

    Article  MATH  MathSciNet  Google Scholar 

  28. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201–1218. doi:10.1002/fld.2221

    Article  MATH  Google Scholar 

  29. Hamed A (1998) Effect of particle characteristics on trajectories and blade impact. J Fluids Eng 110:33–37

    Article  Google Scholar 

  30. Seggiani M, Bardi A, Vitolo S (2000) Prediction of fly-ash size distribution: a correlation between the char transition radius and coal properties. Fuel 79:999–1002

    Article  Google Scholar 

  31. Sommerfeld M, van Wachem B, Olimans R (2009) Dispersed turbulent multi-phase flow in Best practice guidelines, ERCOFTAC, Brussels

  32. Zhou H, Jensen PA, Frandsen FJ (2007) Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler. Fuel 86:1519–1533

    Article  Google Scholar 

  33. Crowe CT, Troutt TR, Chung JN (1996) Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech 28:11–43

    Article  MathSciNet  Google Scholar 

  34. Tedeschi G, Gouin H, Elena M (1999) Motion of tracer particles in supersonic flows. Exp Fluids 26:288–296

    Article  Google Scholar 

  35. Miranda FC, Heinrich A, Sesterhenn J (2013) The influence of the fluid acceleration term on the simulation of a particle-laden compressible jet with shock waves. In: European Turbulence Conference 14. ENS de Lyon, Lyon

Download references

Acknowledgments

This work was supported by the Department of Mechanical and Aerospace Engineering, University of Rome “La Sapienza” under the Bilateral Agreement UDEP/“La Sapienza”. Partial support was provided by the Italian Ministry of University and Academic Research, under the Visiting Professor Program, 2009. The last author was supported in part by ARO Grant W911NF-12-1-0162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Rispoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rispoli, F., Delibra, G., Venturini, P. et al. Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and \(YZ\beta \) shock-capturing. Comput Mech 55, 1201–1209 (2015). https://doi.org/10.1007/s00466-015-1160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1160-3

Keywords

Navigation