Skip to main content
Log in

A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We propose a non-intrusive numerical coupling method for transient fluid-structure interaction (FSI) problems simulated by means of different discretization methods: smoothed particle hydrodynamics (SPH) and finite element (FE) methods for the fluid and the solid sub-domains, respectively. As a partitioned coupling method, the present algorithm can ensure a zero interface energy during the whole period of numerical simulation, even in the presence of large interface motion. In other words, the time integrations of the two sub-domains (second order Runge–Kutta scheme for fluid and Newmark integrator for solid) are synchronized. Thanks to this energy-conserving feature, one can preserve the minimal order of accuracy in time and the numerical stability of the FSI simulations, which are validated with a 1D and a 2D trivial numerical test cases. Additionally, some other 2D FSI simulations involving large interface motion have also been carried out with the proposed SPH–FE coupling method. Finally, an example of aquaplaning problem is given in order to show the feasibility of such coupling method in multi-dimensional applications with complicated structural geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Antoci C (2006) Simulazione numerica dell’interazione fluido-struttura con la tecnica SPH. Ph.D. thesis, Università di Pavia

  2. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid-structure interfaction by SPH. Comput Struct 85:879–890

    Article  Google Scholar 

  3. Bathe KJ, Zhang H (2009) A mesh adaptivity procedure for CFD and fluid-structure interactions. Comput Struct 87:604–617

    Article  Google Scholar 

  4. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  5. Combescure A, Gravouil A (2002) A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis. Comput Methods Appl Mech Eng 191:1129–1157

    Article  MATH  Google Scholar 

  6. Donea J, Huerta A, Ponthot JP, Rodríguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. Wiley, Chichester

    Book  Google Scholar 

  7. Dubois F (2011) Partial riemann problem, boundary conditions, and gas dynamics. In: Tourrette L, Halpern L (eds) Absorbing boundaries and layers, domain decomposition methods: applications to large scale computations. Nova Science Publishers, Inc, New York, pp 16–77

  8. Farhat C, Crivelli L, Géradin M (1997) On the spectral stability of time integration algorithms for a class of constrained dynamics problems. In: AIAA 34th structural dynamics meeting

  9. Farhat C, Lesoinne M (2000) Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems. Comput Methods Appl Mech Eng 182:499–515

    Article  MATH  Google Scholar 

  10. Farhat C, Rallu A, Wang K, Belytschko T (2010) Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly non-linear compressible fluidstructure interaction problems. Int J Numer Methods Eng 84(1):73–107. doi:10.1002/nme.2883

    Article  MATH  MathSciNet  Google Scholar 

  11. Felippa CA, Park KC, Farhat C (1998) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190:3247–3270

    Article  Google Scholar 

  12. Fourey G, Oger G, Touzé Le, Alessandrini B (2010) Violent fluid-structure interaction simulations using a coupled SPH/FEM method. IOP Conf Ser Mater Sci Eng 10:12041

    Article  Google Scholar 

  13. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  14. Hughes TJR, Belytschko T (1995) Nonlinear finite element analysis, ICE division. Zace Services Ltd., Lausanne

    Google Scholar 

  15. Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incomressible fluids: application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776

    Article  MATH  Google Scholar 

  16. Leduc J (2010) Étude physique et numérique de l’écoulement dans un système d’injection de turbine Pelton. Ph.D. thesis, École Centrale de Lyon, Ecully

  17. Li Z (2013) Développement d’une méthode de simulation de couplage fluide-structure à l’aide de la méthode SPH. Ph.D. thesis, École Centrale de Lyon, Ecully

  18. Li Z, Combescure A, Leboeuf F (2013) Coupling of finite volume and finite element subdomains using different time integrators. Int J Numer Methods Fluids 72:1286–1306

    Article  MathSciNet  Google Scholar 

  19. Li Z, Leduc J, Combescure A, Leboeuf F (2014) Coupling of SPH-ALE method and finite element method for transient fluid-structure interaction. Comput Fluids 103:6–17

    Article  MathSciNet  Google Scholar 

  20. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshless particle method. World Scientific, Singapore

    Book  Google Scholar 

  21. Lucy LB (1977) Numerical approach to testing the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  22. Macdonald JR (1966) Some simple isothermal equations of state. Rev Mod Phys 38(4):679–699

    Article  MathSciNet  Google Scholar 

  23. Mahjoubi N, Gravouil A, Combescure A (2009) Coupling subdomains with heterogeneous time integrators and incompatible time steps. Comput Mech 44(6):825–843

    Article  MATH  MathSciNet  Google Scholar 

  24. Mahjoubi N, Gravouil A, Combescure A, Greffet N (2011) A monolithic energy conserving method to couple heterogeneous time integrators with incompatible time steps in structural dynamics. Comput Methods Appl Mech Eng 200(9):1069–1086

    Article  MATH  Google Scholar 

  25. Marongiu J.C (2007) Méthode numérique lagrangienne pour la simulation d’écoulements à surface libre—application aux turbines Pelton. Ph.D. thesis, École Centrale de Lyon, Ecully

  26. Marongiu J.C., Leboeuf F, Caro J, Parkinson E (2009) Low mach number numerical schemes for the SPH-ALE method. Application in free surface flows in Pelton turbines. In: 4th SPHERIC workshop, Nantes

  27. Marongiu JC, Leboeuf F, Caro J, Parkinson E (2010) Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method. J Hydraul Res 48:40–49

    Article  Google Scholar 

  28. Michler C, Hulshoff S, van Brummelen E, de Borst R (2004) A monolithic approach to fluidstructure interaction. Comput Fluids 33(5–6):839–848

    Article  MATH  Google Scholar 

  29. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

    Article  MATH  Google Scholar 

  30. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Google Scholar 

  31. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MATH  MathSciNet  Google Scholar 

  32. Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Eng 198:2785–2795

    Article  MATH  Google Scholar 

  33. Schaback R, Wendland H (2006) Kernel techniques: from machine learning to meshless methods. Acta Numer 15:543–639

    Article  MATH  MathSciNet  Google Scholar 

  34. Scolan YM (2004) Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid. J Sound Vib 277:163–203

    Article  Google Scholar 

  35. Souli M, Ouahsine A, Lewin L (2000) ALE formulation for fluidstructure interaction problems. Comput Methods Appl Mech Eng 190:659–675

    Article  MATH  Google Scholar 

  36. Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  37. Vila JP (1999) On particle weighted methods and smooth particle hydrodynamics. Math Models Methods Appl Sci 9(2):161–209

    Article  MATH  MathSciNet  Google Scholar 

  38. Walhorn E, Kölke A, Hübner B, Dinkler D (2005) Fluid-structure coupling within a monolithic model involving free surface flows. Comput Struct 83:2100–2111

    Article  Google Scholar 

  39. Zhang L, Gay M (2007) Immersed finite element method for fluid-structure interaction. J Fluids Struct 23:839–857

    Article  Google Scholar 

  40. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially funded by the “PREDHYMA” European project contract \(\hbox {N}^\circ \) PITN (2013-608393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Combescure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Leduc, J., Nunez-Ramirez, J. et al. A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion. Comput Mech 55, 697–718 (2015). https://doi.org/10.1007/s00466-015-1131-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1131-8

Keywords