Skip to main content
Log in

Finite subdomain radial basis collocation method

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Radial basis collocation method has easy implementation and exponential convergence. However, generally, the resultant collocation matrix is full and ill-conditioned and it’s hard to represent the local properties in solutions. Therefore, a finite subdomain collocation method with radial basis approximation is proposed. The approximation in subdomain is established within the subdomain and continuity conditions are imposed on all the interfaces in strong form. Consequently, the original full matrix can be transformed into a sparse matrix. Variant shape parameters can be used in different subdomains considering the need of solution representation in each subdomain. It can not only well alleviate the ill-condition and improve the solution accuracy, but also possess exponential convergence. Furthermore, CPU time can be markedly reduced. Error analysis and proper domain decomposition are also investigated. Numerical results show that this method has good performance for problems with high-gradient and singular problems which are prominent for their local characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

    Article  Google Scholar 

  2. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  3. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  4. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314

    Article  MathSciNet  MATH  Google Scholar 

  5. Duarte CA, Oden JT (1996) Hp clouds—an hp meshless method. Numer Methods Partial Differ Equ 12:673–705

    Article  MathSciNet  MATH  Google Scholar 

  6. Atluri T, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  8. Trefftz E (1926) Ein Gegenstuck zum ritzschen Verfahren. In: Proceedings of the 2nd international congress for applied mechanics, Zurich, pp 131–137

  9. Mathon R, Johnston RL (1977) Approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J Numer Anal 14:638–650

    Article  MathSciNet  MATH  Google Scholar 

  10. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I: surface approximations and partial derivative estimates. Comput Math Appl 19:127–145

    Article  MathSciNet  MATH  Google Scholar 

  11. Kansa EJ (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II: solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161

    Article  MathSciNet  MATH  Google Scholar 

  12. Madych WR, Nelson SA (1992) Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J Approx Theory 70:94–114

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng AHD, Colberg MA, Kansa EJ, Zammito O (2003) Exponential convergence and h–c multiquadric collocation method for partial differential equations. Numer Methods Partial Differ Equ 19(5):571–694

    Article  MATH  Google Scholar 

  14. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 176:1905–1915

    Article  Google Scholar 

  15. Hardy RL (1975) Research results in the applications of multiquartic equation to surveying and mapping problems. Surv Mapp 35:321–332

    Google Scholar 

  16. Duchon J (1976) Interpolation des fonction de deux variables suivant le principe de la flexian des plaques minces. RAIRO Anal Numer 10:5–12

    MathSciNet  Google Scholar 

  17. Meiguet J (1979) Multivariate interpolation in arbitrary points made simple. J Appl Math Phys 30:292–304

    Article  Google Scholar 

  18. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52:119–139

    Google Scholar 

  19. Matheron G (1962) Traite de geostatistique appliqué. Editions Technip, Paris

    Google Scholar 

  20. Powell MJD (1987) Radial basis functions for multivariate interpolation: a review. In: Mason JC, Cox MG (eds) Algorithms for approximation. Clarendon Press, Oxford

    Google Scholar 

  21. Cecil T, Qian J, Osher S (2004) Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions. J Comput Phys 196:327–347

    Article  MathSciNet  MATH  Google Scholar 

  22. Flyer N, Wright G (2007) Transport schemes on a sphere using radial basis functions. J Comput Phys 226:1059–1084

    Article  MathSciNet  MATH  Google Scholar 

  23. Fassauer GE (1997) Solving partial differential equation by collocation with radial basis functions. In: LeMehaute A, Rabut C, Schumaker L (eds) Proceeding of Chamonix. Vanderbilt University Press, Nashville, pp 131–138

    Google Scholar 

  24. Franke C, Schaback R (1998) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93:73–82

    Article  MathSciNet  MATH  Google Scholar 

  25. Fedoseyev AI, Friedman MJ, Kansa EJ (2002) Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary. Comput Math Appl 43(3–5):439–455

    Article  MathSciNet  MATH  Google Scholar 

  26. Sarra SA (2005) Adaptive radial basis function methods for time dependent partial differential equations. Appl Numer Math 54(1):79–94

    Article  MathSciNet  MATH  Google Scholar 

  27. Bouhamidi A, Jbilou K (2008) Meshless thin plate spline methods for the modified Helmholtz equation. Comput Methods Appl Mech Eng 197:3733–3741

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu HY, Li ZC, Cheng AHD (2005) Radial basis collocation method for elliptic equations. Comput Math Appl 50:289–320

    Article  MathSciNet  MATH  Google Scholar 

  29. Larsson E, Fornberg B (2003) A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput Math Appl 46(5–6):891–902

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang L, Chu F, Zhong Z (2013) Study of radial basis collocation method for wave propagation. Eng Anal Bound Elem 37(2):453–463

    Article  MathSciNet  Google Scholar 

  31. Jamil M, Ng FYK (2013) Evaluation of meshless radial basis collocation method (RBCM) for heterogeneous conduction and simulation of temperature inside the biological tissues. Int J Therm Sci 68:42–52

    Article  Google Scholar 

  32. Schaback R (1995) Error estimates and condition numbers for radial basis function interpolation. Adv Comput Math 3:251– 264

    Article  MathSciNet  MATH  Google Scholar 

  33. Schaback R (1995) Creating surfaces from scattered data using radial basis functions. In: Dæhlen M, Lyche T, Schumaker L (eds) Mathematical methods for curve and surfaces. Vanderbilt University Press, Nashville, pp 477–496

    Google Scholar 

  34. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu Z (1995) Multivariate compactly supported positive definite radial functions. Adv Comput Math 4:283–292

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu Z (1995) Characterization of positive definite radial functions. In: Dæhlen M, Lyche T, Schumaker L (eds) Mathematical methods for curve and surfaces. Vanderbilt University Press, Nashville

    Google Scholar 

  37. Buhmann MD (2001) A new class of radial basis functions with compact support. Math Comput 70(233):307–318

    Article  MathSciNet  MATH  Google Scholar 

  38. Kansa EJ, Hon YC (2000) Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput Math Appl 39:123–137

    Google Scholar 

  39. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54:1623–1648

    Article  MATH  Google Scholar 

  40. Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 192:941–954

    Article  MATH  Google Scholar 

  41. Chen JS, Hu W, Hu HY (2007) Reproducing kernel enhanced local radial basis collocation method. Int J Numer Methods Eng 75:600–627

    Article  Google Scholar 

  42. Volokh KY (2000) Pin-pointing solution of ill-conditioned square system of linear equations. Appl Math Lett 13:119–124

    Article  MathSciNet  MATH  Google Scholar 

  43. Emdadi A, Kansa EJ, Libre NA, Rahimian M, Shekarchi M (2008) Stable PDE solution methods for large multiquadric shape parameters. Comput Model Eng Sci 25(1):23–41

    MathSciNet  MATH  Google Scholar 

  44. Ling L, Kansa EJ (2005) A least-squares preconditioner for radial basis functions collocation methods. Adv Comput Math 23:31–54

    Article  MathSciNet  MATH  Google Scholar 

  45. Brown D, Ling L, Kansa EJ, Levesley J (2005) On approximate cardinal preconditioning for solving PDEs with radial basis functions. Eng Anal Bound Elem 29:343–353

    Article  MATH  Google Scholar 

  46. Wong SM, Hon YC, Li TS, Chung SL, Kansa EJ (1999) Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme. Comput Math Appl 37:23–43

    Article  MathSciNet  MATH  Google Scholar 

  47. Li J, Hon HY (2004) Domain decomposition for radial basis meshless methods. Numer Methods Partial Differ Equ 20(3):450–462

    Article  MathSciNet  MATH  Google Scholar 

  48. Ling L, Hon YC (2005) Improved numerical solver for Kansa’s method based on affine space decomposition. Eng Anal Bound Elem 29:1077–1085

    Google Scholar 

  49. Chen JS, Wang L, Hu HY, Chi SW (2009) Subdomain radial basis collocation method for heterogeneous media. Int J Numer Methods Eng 80:163–190

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang L, Chen JS, Hu HY (2010) Subdomain radial basis collocation method for fracture mechanics. Int J Numer Methods Eng 83:851–876

    MathSciNet  MATH  Google Scholar 

  51. Hu HY, Chen JS, Hu W (2007) Weighted radial basis collocation method for boundary value problems. Int J Numer Methods Eng 69:2736–2757

    Article  MATH  Google Scholar 

  52. Ciarlet PG (1978) The finite element method for elliptic problem. North-Holland Inc., New York

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Project No. 11202150), Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project (Project No. B302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, F., Wang, L. & Zhong, Z. Finite subdomain radial basis collocation method. Comput Mech 54, 235–254 (2014). https://doi.org/10.1007/s00466-014-0981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-0981-9

Keywords

Navigation