Skip to main content
Log in

Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a “smooth + singular” decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain efficient error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu GR, Dai KY, Nguyen TT (2006) A smoothed finite element method for mechanics problems. Comput Mech 39(6): 859–877. doi:10.1007/s00466-006-0075-4

    Article  Google Scholar 

  2. Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71(8): 902–930

    Article  MathSciNet  MATH  Google Scholar 

  3. Nguyen-Xuan H, Bordas SPA, Nguyen-Dang H (2008) Smooth finite element methods: convergence, accuracy and properties. Int J Numer Methods Eng 74(2): 175–208. doi:10.1002/nme

    Article  MathSciNet  MATH  Google Scholar 

  4. Bordas SPA, Natarajan S (2010) On the approximation in the smoothed finite element method (SFEM). Int J Numer Methods Eng 81(5): 660–670. doi:10.1002/nme

    MathSciNet  MATH  Google Scholar 

  5. Zhang HH, Liu SJ, Li LX (2008) On the smoothed finite element method. Int J Numer Methods Eng 76(8): 1285–1295. doi:10.1002/nme.2460

    Article  MathSciNet  MATH  Google Scholar 

  6. Nguyen-Thoi T, Liu G, Lam K, Zhang G. (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu G, Nguyen-Thoi T, Lam K (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320: 1100–1130

    Article  Google Scholar 

  8. Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Lam K (2009) A node based smoothed finite element method (NS-FEM) for upper bound solution to solid mechanics problems. Comput Struct 87: 14–26

    Article  Google Scholar 

  9. Liu G. Smoothed Finite Element Methods. CRC Press, 2010

  10. Liu G, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on the smoothed FEM (SFEM) models: Properties, accuracy and convergence rates. Int J Numer Methods Biomed Eng 84: 1222–1256

    Article  MathSciNet  MATH  Google Scholar 

  11. Nguyen T, Liu G, Dai K, Lam K (2007) smoothed finite element method. Tsinghua Sci Technol 12: 497–508

    Article  MathSciNet  Google Scholar 

  12. Hung NX, Bordas S, Hung N (2009) Addressing volumetric locking and instabilities by selective integration in smoothed finite element. Commun Numer Methods Eng 25: 19–34

    Article  MathSciNet  MATH  Google Scholar 

  13. Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197: 1184–1203

    Article  MATH  Google Scholar 

  14. Nguyen NT, Rabczuk T, Nguyen-Xuan H, Bordas S (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198: 165–177

    Article  MATH  Google Scholar 

  15. Bordas SPA, Rabczuk T, Hung NX, Nguyen VP, Natarajan S, Bog T, óuan DM, Hiep NV (2010) Strain smoothing in FEM and XFEM. Comput Struct 88(23–24): 1419–1443. doi:10.1016/j.compstruc.2008.07.006

    Article  Google Scholar 

  16. Bordas SP, Natarajan S, Kerfriden P, Augarde CE, Mahapatra DR, Rabczuk T, Pont SD (2011) On the performance of strain smoothing for óuadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). Int J Numer Methods Biomed Eng 86: 637–666

    Article  MATH  Google Scholar 

  17. Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Dai K, Lam K (2009) On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM). Int J Numer Methods Eng 77: 1863–1869. doi:10.1002/nme.2587

    Article  MathSciNet  MATH  Google Scholar 

  18. Strouboulis T, Zhang L, Wang D, Babuška I. (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195(9–12): 852–879

    Article  MATH  Google Scholar 

  19. Bordas SPA, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36): 3381–3399

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiao óZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least sóuares technique. In: Topping BHV, Soares CAM (eds) Progress in computational structures technology. Saxe-Coburg Publications, Stirling, pp 111–138

    Chapter  Google Scholar 

  21. Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular + smooth stress field splitting. Int J Numer Methods Eng 76(4): 545–571. doi:10.1002/nme.2313

    Article  MATH  Google Scholar 

  22. Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Methods Eng 81(6): 671–700

    MATH  Google Scholar 

  23. Barros FB, Proenca SPB, de Barcellos CS (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Methods Eng 60(14):2373–2398. doi:10.1002/nme.1048

    Google Scholar 

  24. Nguyen-Thoi T, Liu G, Nguyen-Xuan H, Nguyen-Tran C (2011) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Int J Numer Methods Biomed Eng 27(2): 198–218. doi:10.1002/cnm

    Article  MathSciNet  MATH  Google Scholar 

  25. González-Estrada OA, Ródenas JJ, Bordas SPA, Duflot M, Kerfriden P, Giner E (2012) On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Eng Comput 29(8)

  26. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2): 337–357

    Article  MathSciNet  MATH  Google Scholar 

  27. Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40): 2607–2621

    Article  MATH  Google Scholar 

  28. Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J Appl Mech 19: 526–534

    Google Scholar 

  29. Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  30. Barber JR. (2010) Elasticity. Series: solid mechanics and its application, 3rd edn. Springer, Dordrecht

    Google Scholar 

  31. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerki mesh-free methods. Int J Numer Methods Eng 50: 435–466

    Article  MATH  Google Scholar 

  32. Yoo J, Moran B, Chen J (2004) Stabilized conforming nodal integration in the natural element method. Int J Numer Methods Eng 60: 861–890

    Article  MATH  Google Scholar 

  33. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng 33(7): 1331–1364

    Article  MathSciNet  MATH  Google Scholar 

  34. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33(7): 1365–1382

    Article  MathSciNet  MATH  Google Scholar 

  35. Wiberg NE, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and eóuilibrium. Int J Numer Methods Eng 36(16): 2703–2724. doi:10.1002/nme.1620361603

    Article  MathSciNet  MATH  Google Scholar 

  36. Blacker T, Belytschko T (1994) Superconvergent patch recovery with eóuilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3): 517–536

    Article  MathSciNet  MATH  Google Scholar 

  37. Stein E, Ramm E, Rannacher R (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, Chichester

    Google Scholar 

  38. Duflot M, Bordas SPA (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76: 1123–1138. doi:10.1002/nme

    Article  MathSciNet  MATH  Google Scholar 

  39. Bordas SPA, Duflot M, Le P (2008) A simple error estimator for extended finite elements. Commun Numer Methods Eng 24(11): 961–971

    Article  MathSciNet  MATH  Google Scholar 

  40. Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint eóuations: the SPR-C technique. Int J Numer Methods Eng 70(6): 705–727. doi:10.1002/nme.1903

    Article  MATH  Google Scholar 

  41. Díez P, Ródenas JJ, Zienkiewicz OC (2007) Eóuilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10): 2075–2098. doi:10.1002/nme

    Article  MATH  Google Scholar 

  42. Yau J, Wang S, Corten H (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2): 335–341

    Article  MATH  Google Scholar 

  43. Ródenas JJ, González-Estrada OA, Fuenmayor FJ, Chinesta F (2010) Upper bounds of the error in X-FEM based on a moving least sóuares (MLS) recovery technique. In: Khalili N, Valliappan S, Li ó, Russell A (eds) 9th World congress on computational mechanics (WCCM9). 4th Asian Pacific Congress on computational methods (APCOM2010). Centre for Infrastructure Engineering and Safety

  44. Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2007) Upper bounds of the error in the extended finite element method by using an eóuilibrated-stress patch recovery technique. In: International conference on adaptive modeling and simulation (ADMOS 2007). International Center for Numerical Methods in Engineering (CIMNE), pp 210–213

  45. Menk A, Bordas S (2010) Numerically determined enrichment function for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. Int J Numer Methods Eng 83: 805–828

    MathSciNet  MATH  Google Scholar 

  46. Menk A, Bordas S (2011) Crack growth calculations in solder joints based on microstructural phenomena with X-FEM. Comput Mater Sci 3: 1145–1156

    Article  Google Scholar 

  47. Ródenas JJ (2001) Error de discretización en el cálculo de sensibilidades mediante el método de los elementos finitos. PhD Thesis, Universidad Politécnica de Valencia

  48. Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane P. A. Bordas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Estrada, O.A., Natarajan, S., Ródenas, J.J. et al. Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Comput Mech 52, 37–52 (2013). https://doi.org/10.1007/s00466-012-0795-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0795-6

Keywords

Navigation