Skip to main content
Log in

Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We conduct discrete spectrum analyses for a selection of mixed discretization schemes for the Stokes eigenproblem. In particular, we consider the MINI element, the Crouzeix–Raviart element, the Marker-and-Cell scheme, the Taylor–Hood element, the \({\mathbf{Q}_{k}/P_{k-1}}\) element, the divergence-conforming discontinuous Galerkin method, and divergence-conforming B-splines. For each of these schemes, we compare the spectrum for the continuous Stokes problem with the spectrum for the discrete Stokes problem, and we discuss the relationship of eigenvalue errors with solution errors associated with unsteady viscous flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold DN, Brezzi F, Fortin M (1984) A stable finite element for the Stokes equations. Calcolo 21: 337–344

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi C, Maday Y (1999) Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math Models Methods Appl Sci 9: 395–414

    Article  MathSciNet  MATH  Google Scholar 

  4. Boffi D (2010) Finite element approximation of eigenvalue problems. Acta Numerica 19: 1–120

    Article  MathSciNet  MATH  Google Scholar 

  5. Buffa A, de Falco C, Sangalli G (2011) Isogeometric analysis: stable elements for the 2D Stokes equation. Int J Numer Methods Fluids 65:1407–1422,20–30

    Google Scholar 

  6. Buffa A, Rivas J, Sangalli G, Vázquez R (2011) Isogeometric discrete differential forms in three dimensions. SIAM J Numer Anal 49: 818–844

    Article  MathSciNet  MATH  Google Scholar 

  7. Buffa A, Sangalli G, Vázquez R (2010) Isogeometric analysis in electromagnetics: B-splines approximation. Comput Methods Appl Mech Eng 199: 1143–1152

    Article  MATH  Google Scholar 

  8. Cockburn B, Kanschat G, Schötzau D (2004) A locally conservative LDG method for the incompressible Navier–Stokes equations. Math Comput 74: 1067–1095

    Article  Google Scholar 

  9. Cockburn B, Kanschat G, Schötzau D (2007) A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. SIAM J Sci Comput 31: 61–73

    MATH  Google Scholar 

  10. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Google Scholar 

  11. Crouzeix M, Raviart PA (1973) Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. Anal Numérique 7: 33–76

    MathSciNet  Google Scholar 

  12. Evans JA (2011) Divergence-free B-spline discretizations for viscous incompressible flows. Ph.D. thesis, The University of Texas at Austin

  13. Evans JA, Hughes TJR (2012) Isogeometric divergence-conforming B-splines for the Darcy–Stokes–Brinkman equations. Math Models Methods Appl Sci doi:10.1142/S0218202512500583

  14. Evans JA, Hughes TJR (2012) Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations. Math Models Methods Appl Sci (In press)

  15. Evans JA, Hughes TJR (2012) Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. Tech Rep ICES Rep 12–16

  16. Girault V, Lopez H (1996) Finite-element error estimates for the MAC scheme. IMA J Numer Anal 16: 347–379

    Article  MathSciNet  MATH  Google Scholar 

  17. Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8: 2182

    Article  MATH  Google Scholar 

  18. Hood P, Taylor C (1974) Navier–Stokes equations using mixed interpolation. In: Oden JT, Gallagher RH, Zienkiewicz OC, Taylor CFinite elementmethods in flowproblems..University ofAlabama in Huntsville Press, pp 121–132

  19. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola

    MATH  Google Scholar 

  20. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accomodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput Methods Appl Mech Eng 197: 4104–4124

    Article  MathSciNet  MATH  Google Scholar 

  22. Kanschat G (2008) Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme. Int J Numer Methods Fluids 56: 941–950

    Article  MathSciNet  MATH  Google Scholar 

  23. Matthies G, Tobiska L (2007) Mass conservation of finite element methods for coupled flow-transport problems. Int J Comput Sci Math 1: 293–307

    Article  MathSciNet  MATH  Google Scholar 

  24. Nicolaides RA (1992) Analysis and convergence of the MAC scheme I. The linear problem. SIAM J Numer Anal 29: 1579–1591

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J.A., Hughes, T.J.R. Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem. Comput Mech 50, 667–674 (2012). https://doi.org/10.1007/s00466-012-0788-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0788-5

Keywords

Navigation