Skip to main content
Log in

Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we present a dynamic refinement algorithm for the smoothed particle Hydrodynamics (SPH) method. An SPH particle is refined by replacing it with smaller daughter particles, which positions are calculated by using a square pattern centered at the position of the refined particle. We determine both the optimal separation and the smoothing distance of the new particles such that the error produced by the refinement in the gradient of the kernel is small and possible numerical instabilities are reduced. We implemented the dynamic refinement procedure into two different models: one for free surface flows, and one for post-failure flow of non-cohesive soil. The results obtained for the test problems indicate that using the dynamic refinement procedure provides a good trade-off between the accuracy and the cost of the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oger G, Doring M, Alessandrini B, Ferrant P (2006) Two-dimensional sph simulations of wedge water entries. J Comput Phys 213(2): 803–822. doi:10.1016/j.jcp.2005.09.004

    Article  MathSciNet  MATH  Google Scholar 

  2. Bate M, Bonnell I, Price N (1995) Modelling accretion in protobinary systems. Mon Not Roy Astron Soc 277: 362–376

    Google Scholar 

  3. Kitsionas S, Whitworth A (2002) Smoothed particle hydrodynamics with particle splitting, applied to self-gravitating collapse. Mon Not Roy Astron Soc 330(1): 129–136

    Article  Google Scholar 

  4. Kitsionas S, Whitworth AP (2007) High-resolution simulations of clump-clump collisions using sph with particle splitting. Mon Not Roy Astron Soc 378(2): 507–524. doi:10.1111/j.1365.2966.2007.11707.x

    Article  Google Scholar 

  5. Meglicki Z, Wickramasinghe D, Bicknell G (1993) 3d structure of truncated accretion disks in close binaries. Mon Not Roy Astron Soc 264(3): 691–704

    Google Scholar 

  6. Monaghan J, Varnas S (1988) The dynamics of interstellar cloud complexes. Mon Not Roy Astron Soc 231(2): 515–534

    Google Scholar 

  7. Lastiwka M, Quinlan N, Basa M (2005) Adaptive particle distribution for smoothed particle hydrodynamics. Int J Num Methods Fluids 47(10–11):1403–1409 doi:10.1002/fld.891. (8th ICFD Conference on Numerical Methods for Fluid Dynamics, Oxford, 2004)

    Google Scholar 

  8. Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems. Int J Num Methods Eng 72(3): 295–324. doi:10.1002/nme.2010

    Article  MathSciNet  MATH  Google Scholar 

  9. Feldman J (2006) Dynamic refinement and boundary contact forces in smoothed particle hydrodynamics with applications in fluid flow problems. Ph.D. thesis, University of Wales, School of Engineering, Swansea

  10. Liu G, Liu M (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  11. Liu M, Liu G (2010) Smoothed particle hydrodynamics (sph): an overview and recent developments. Arch Comput Method Eng 17(1): 25–76. doi:10.1007/s11831-010-9040-7

    Article  Google Scholar 

  12. Monaghan J (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8): 1703–1759

    Article  MathSciNet  Google Scholar 

  13. Reyes~López Y, Roose D (2011) Particle refinement for fluid flow simulations with sph. In: 19th international conference on computer methods in mechanics. Short papers, p 427–428. http://www.cmm.il.pw.edu.pl/cd/pdf/079_f.pdf

  14. Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190: 225–239

    Article  MATH  Google Scholar 

  15. Swegle J, Hicks D, Attaway S (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116: 123–134. doi:10.1006/jcph.1995.1010

    Article  MathSciNet  MATH  Google Scholar 

  16. Monaghan J (1994) Simulating free surface flows with sph. J Comput Phys 110(2): 399–406. doi:10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  17. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (sph) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Num Anal Methods Geomech 32(12): 1537–1570. doi:10.1002/nag.688

    Article  Google Scholar 

  18. Morris J, Fox P, Zhu Y (1997) Modeling low reynolds number incompressible flows using sph. J Comput Phys 136(1): 214–226. doi:10.1006/jcph.1997.5776

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaidel Reyes López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes López, Y., Roose, D. & Recarey Morfa, C. Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations. Comput Mech 51, 731–741 (2013). https://doi.org/10.1007/s00466-012-0748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0748-0

Keywords

Navigation