Skip to main content
Log in

Micromechanical modelling of switching phenomena in polycrystalline piezoceramics: application of a polygonal finite element approach

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A micromechanically motivated model is proposed to capture nonlinear effects and switching phenomena present in ferroelectric polycrystalline materials. The changing remnant state of the ferroelectric crystal is accounted for by means of so-called back fields—such as back stresses—to resist or assist further switching processes in the crystal depending on the local loading history. To model intergranular effects present in ferroelectric polycrystals, the computational model elaborated is embedded into a mixed polygonal finite element approach, whereby an individual ferroelectric grain is represented by one single irregular polygonal finite element. This computationally efficient coupled simulation framework is shown to reproduce the specific characteristics of the responses of ferroelectric polycrystals under complex electromechanical loading conditions in good agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  2. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Oxford University Press, Oxford

    Google Scholar 

  3. Shieh J, Huber JE, Fleck NA (2003) An evaluation of switching criteria for ferroelectrics under stress and electric field. Acta Materialia 51: 6123–6137

    Article  Google Scholar 

  4. Kamlah M (2001) Ferroelectric and ferroelastic piezoceramics—modeling and electromechanical hysteresis phenomena. Continuum Mech Thermodyn 13: 219–268

    Article  MATH  Google Scholar 

  5. Landis CM (2004) Non-linear constitutive modeling of ferroelectrics. Curr Opin Solid State Mater Sci 8: 59–69

    Article  Google Scholar 

  6. Huber JE (2005) Micromechanical modeling of ferroelectrics. Curr Opin Solid State Mater Sci 9: 100–106

    Article  Google Scholar 

  7. Cocks ACF, McMeeking RM (1999) A phenomenological constitutive law for the behavior of ferroelectric ceramics. Ferroelectrics 228: 219–228

    Article  Google Scholar 

  8. Kamlah M, Tsakmakis C (1999) Phenomenological modeling of the nonlinear electro-mechanical coupling in ferroelectrics. Int J Solids Struct 36: 669–695

    Article  MATH  Google Scholar 

  9. Landis CM (2002) Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J Mech Phys Solids 50: 127–152

    Article  MATH  Google Scholar 

  10. McMeeking RM, Landis CM (2002) A phenomenological multiaxial constitutive law for switching in polycrystalline ferroelectric ceramics. Int J Eng Sci 40: 1553–1577

    Article  MathSciNet  MATH  Google Scholar 

  11. Schröder J, Romanowski H (2005) A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch Appl Mech 74: 863–877

    Article  MATH  Google Scholar 

  12. Hwang SC, Lynch CS, McMeeking RM (1995) Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metallurgica et Materialia 43: 2073–2084

    Article  Google Scholar 

  13. Michelitsch T, Kreher WS (1998) A simple model for the nonlinear material behavior of ferroelectrics. Acta Materialia 46: 5085–5094

    Article  Google Scholar 

  14. Lu W, Fang DN, Li CQ, Hwang KC (1999) Nonlinear electric-mechanical behaviour and micromechanics modeling of ferroelectric domain evolution. Acta Materialia 47: 2913–2926

    Article  Google Scholar 

  15. Arlt G (1996) A physical model for hysteresis curves of ferroelectric ceramics. Ferroelectrics 189: 103–119

    Article  Google Scholar 

  16. Hwang SC, Huber JE, McMeeking RM, Fleck NA (1998) The simulation of switching in polycrystalline ferroelectric ceramics. J Appl Phys 84: 1530–1540

    Article  Google Scholar 

  17. Chen W, Lynch CS (1998) A micro-electro-mechanical model for polarization switching of ferroelectric materials. Acta Materialia 46: 5303–5311

    Article  Google Scholar 

  18. Huber JE, Fleck NA, Landis CM, McMeeking RM (1999) A constitutive model for ferroelectric polycrystals. J Mech Phys Solids 47: 1663–1697

    Article  MathSciNet  MATH  Google Scholar 

  19. Hwang SC, McMeeking RM (1999) A finite element model of ferroelastic polycrystals. Int J Solids Struct 36: 1541–1556

    Article  MATH  Google Scholar 

  20. Steinkopff T (1999) Finite-element modelling of ferroelectric domain switching in piezoelectric ceramics. J Eur Ceram Soc 19: 1247–1249

    Article  Google Scholar 

  21. Kamlah M, Liskowsky AC, McMeeking RM, Balke H (2005) Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model. Int J Solids Struct 42: 2949–2964

    Article  MATH  Google Scholar 

  22. Arockiarajan A, Delibas B, Menzel A, Seemann W (2006) Studies on rate-dependent switching effects of piezoelectric materials using a finite element model. Comput Mater Sci 37: 306–317

    Article  Google Scholar 

  23. Haug A, Huber JE, Onck PR, Van der Giessen E (2007) Multi-grain analysis versus self-consistent estimates of ferroelectric polycrystals. J Mech Phys Solids 55: 648–665

    Article  MathSciNet  MATH  Google Scholar 

  24. Arockiarajan A, Menzel A, Delibas B, Seemann W (2007) Micromechanical modeling of switching effects in piezoelectric materials—a robust coupled finite element approach. J Intell Mater Syst Struct 18: 983–999

    Article  Google Scholar 

  25. Menzel A, Arockiarajan A, Sivakumar SM (2008) Two models to simulate rate-dependent domain switching effects—application to ferroelastic polycrystalline ceramics. Smart Mater Struct 17: 015026–015038

    Article  Google Scholar 

  26. Kessler H, Balke H (2001) On the local and average energy release in polarization switching phenomena. J Mech Phys Solids 49: 953–978

    Article  MATH  Google Scholar 

  27. Pathak A, McMeeking RM (2008) Three-dimensional finite element simulations of ferroelectric polycrystals under electrical and mechanical loading. J Mech Phys Solids 56: 663–683

    Article  MATH  Google Scholar 

  28. Kim SJ, Jiang Q (2002) A finite element model for rate-dependent behavior of ferroelectric ceramics. Int J Solids Struct 39: 1015–1030

    Article  MATH  Google Scholar 

  29. Ghosh S, Mallett RL (1994) Voronoi cell finite elements. Comput Struct 50: 33–46

    Article  MATH  Google Scholar 

  30. Ghosh S, Moorthy S (1995) Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method. Comput Methods Appl Mech Eng 121: 373–409

    Article  MATH  Google Scholar 

  31. Pian THH (1964) Derivation of element stiffness matrices by assumed stress distribution. Am Inst Aeronaut Astronaut 2: 1333–1336

    Google Scholar 

  32. Sze KY, Sheng N (2005) Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics. Finite Elem Anal Des 42: 107–129

    Article  Google Scholar 

  33. Bassiouny E, Ghaleb AF, Maugin GA (1988) Thermomechanical formulation for coupled electromechanical hysteresis effects—I. Basic equations, II. Poling of ceramics. Int J Eng Sci 26: 1279–1306

    Article  MathSciNet  MATH  Google Scholar 

  34. Kamlah M, Jiang Q (1999) A constitutive model for ferroelectric PZT ceramics under uniaxial loading. Smart Mater Struct 8: 441–459

    Article  Google Scholar 

  35. Jayabal K, Arockiarajan A, Sivakumar SM (2008) A micromechanical model for polycrystal ferroelectrics with grain boundary effects. Comput Model Eng Sci 27: 111–123

    Google Scholar 

  36. Nye JF (1985) Physical properties of crystals—their representation by tensors and matrices. Oxford Science Publications, Oxford

    Google Scholar 

  37. Landis CM (2002) A new finite-element formulation for electromechanical boundary value problems. Int J Numer Methods Eng 55: 613–628

    Article  MATH  Google Scholar 

  38. Li F, Fang D, Lee J, Kim CH (2006) Effects of compressive stress on the nonlinear electromechanical behavior of ferroelectric ceramics. Sci China Ser E Technol Sci 49: 29–37

    Article  Google Scholar 

  39. Zhou D, Kamlah M, Laskewitz B (2006) Multi-axial non-proportional polarization rotation tests of soft PZT piezoceramics under electric field loading. Proc SPIE 6170: 617009

    Article  Google Scholar 

  40. Huber JE, Fleck NA (2001) Multi-axial electrical switching of a ferroelectric: theory versus experiment. J Mech Phys Solids 49: 785–811

    Article  MATH  Google Scholar 

  41. Jayabal K, Srikrishna D, Abhinandan TS, Arockiarajan A, Sivakumar SM (2009) A thermodynamically consistent model with evolving domain structures in ferroelectrics. Int J Eng Sci 47: 1014–1024

    Article  Google Scholar 

  42. Landis CM, Wang J, Sheng J (2004) Micro-electromechanical determination of the possible remanent strain and polarization states in polycrystalline ferroelectrics and the implications for phenomenological constitutive theories. J Intell Mater Syst Struct 15: 513–525

    Article  Google Scholar 

  43. Utzinger J, Menzel A, Steinmann P (2008) On the simulation of cohesive fatigue effects in grain boundaries of a piezoelectric mesostructure. Int J Solids Struct 45: 4687–4708

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Menzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayabal, K., Menzel, A., Arockiarajan, A. et al. Micromechanical modelling of switching phenomena in polycrystalline piezoceramics: application of a polygonal finite element approach. Comput Mech 48, 421–435 (2011). https://doi.org/10.1007/s00466-011-0595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0595-4

Keywords

Navigation