Skip to main content
Log in

Residual-based variational multiscale simulation of free surface flows

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work we apply the residual-based variational multiscale method (RB-VMS) to the volume-of-fluid (VOF) formulation of free-surface flows. Using this technique we are able to solve such problems in a Large Eddy Simulation framework. This is a natural extension of our Navier–Stokes solver, which uses the RB-VMS finite element formulation, edge-based data structures, adaptive time step control, inexact Newton solvers and supports several parallel programming paradigms. The VOF interface capturing variable is advected using the computed coarse and fine scales velocity field. Thus, the RB-VMS technique can be readily applied to the free-surface solver with minor modifications on the implementation. We apply this technique to the solution of two problems where available data indicate complex free-surface behavior. Results are compared with numerical and experimental data and show that the present formulation can achieve good accuracy with minor impacts on computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tezduyar TE (1999) CFD methods for three-dimensional computation of complex flow problems. J Wind Eng Ind Aerodyn 81: 97–116

    Article  Google Scholar 

  2. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  3. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – The deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351

    Article  MATH  MathSciNet  Google Scholar 

  4. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371

    Article  MATH  MathSciNet  Google Scholar 

  5. Koshizuka S, Tamako H, Oka Y (1995) A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Mech J 113: 134–147

    Google Scholar 

  6. Violeau D, Issa R (2007) Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Methods Fluids 53: 277–304

    Article  MATH  MathSciNet  Google Scholar 

  7. Larese A, Rossi R, Onate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Eng Comput: Int J Computer-Aided Eng Softw 25(4): 385–425

    Article  Google Scholar 

  8. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40(1): 167–183

    Article  MATH  Google Scholar 

  9. Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019

    Article  MATH  Google Scholar 

  10. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) methods for the dynamics of free boundaries. J Comput Phys 39: 201–225

    Article  MATH  Google Scholar 

  11. Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155: 235–248

    Article  MATH  Google Scholar 

  12. Lohner R, Yang C, Onate E (2006) On the simulation of flows with violent free-surface motion. Comput Methods Appl Mech Eng 195: 5597–5620

    Article  MathSciNet  Google Scholar 

  13. Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge, UK

  14. Osher SJ, Fedkiw RP (2002) Level set methods and dynamic implicit surfaces. Springer

  15. Nagrath S, Jansen KE, Lahey RT Jr (2005) Computation of incompressible bubble dynamics with a stabilized finite element level set method. Comput Methods Appl Mech Eng 194: 4565–4587

    Article  MATH  MathSciNet  Google Scholar 

  16. Shepel SV, Smith BL (2006) New finite-element/finite-volume level set formulation for modelling two-phase incompressible flows. J Comput Phys 218: 479–494

    Article  MATH  MathSciNet  Google Scholar 

  17. Brooks AN, Hughes TJR (1982) Streamline-upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equation. Comput Methods Appl Mech Eng 32: 199–259

    Article  MATH  MathSciNet  Google Scholar 

  18. Coppola-Owen AH, Codina R (2005) Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions. Int J Numer Methods Fluids 49: 1278–1304

    Article  MathSciNet  Google Scholar 

  19. Coppola-Owen AH, Codina R (2007) A finite element model for free surface flows on fixed meshes. Int J Numer Methods Fluids 54: 1151–1171

    Article  MATH  MathSciNet  Google Scholar 

  20. Elias RN, Coutinho ALGA (2007) Stabilized edge-based finite element simulation of free-surface flows. Int J Numer Methods Fluids 54: 965–993

    Article  MATH  MathSciNet  Google Scholar 

  21. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44

    Article  MATH  MathSciNet  Google Scholar 

  22. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  23. Cruchaga M, Celentano D, Tezduyar TE (2001) A moving Lagrangian interface technique for flow computations over fixed meshes. Comput Methods Appl Mech Eng 191: 525–543

    Article  MATH  Google Scholar 

  24. Lohner R, Camelli F (2004) Dynamic deactivation for advection-dominated contaminant transport. Commun Methods Eng 20: 639–646

    Article  Google Scholar 

  25. Elias RN, Gonçalves MA Jr, Coutinho ALGA, Esperança PTT, Martins MAD, Ferreira MDAS (2009) Computational Techniques for Stabilized Edge-Based Finite Element Simulation of Nonlinear Free-Surface Flows. J Offshore Mech Arct Eng, ASME 131:041103-1–041103-7

    Google Scholar 

  26. Sagaut P, Deck S, Terracol M (2006) Multiscale and multi- resolution approaches in turbulence. Imperial College Press, London

    Book  Google Scholar 

  27. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized method. Comput Methods Appl Mech Eng 127: 387–401

    Article  MATH  Google Scholar 

  28. Hughes TJR, Feijoo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method-a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166: 3–24

    Article  MATH  MathSciNet  Google Scholar 

  29. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In: Stein E, Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics. Wiley, Chichester

    Google Scholar 

  30. Calo VM (2004) Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition, PhD Thesis, Stanford University

  31. Gravemeier V (2006) The variational multiscale method for laminar and turbulent flow. Arch Comput Methods Eng 13(2): 249–324

    Article  MATH  MathSciNet  Google Scholar 

  32. Masud A, Calderer R (2009) A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations. Comput Mech 44(2): 145–160

    Article  MATH  MathSciNet  Google Scholar 

  33. Akin JE, Tezduyar TE, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70: 2–9

    Article  MATH  Google Scholar 

  34. Hoffman J, Johnson C (2006) A new approach to computational turbulence modeling. Comput Methods Appl Mech Eng 195: 2865–2880

    Article  MATH  MathSciNet  Google Scholar 

  35. Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36: 121–126

    Article  MATH  Google Scholar 

  36. Tejada-Martinez AE, Jansen KE (2005) On the interaction between dynamic model dissipation and numerical dissipation due to streamline upwind/Petrov–Galerkin stabilization. Comput Methods Appl Mech Eng 194: 1225–1248

    Article  MATH  Google Scholar 

  37. de Sampaio PAB, Hallak PH, Coutinho ALGA, Pfeil MS (2004) A stabilized finite element procedure for turbulent fluid-structure interaction using adaptive time-space refinement. Int J Numer Methods Fluids 44: 673–693

    Article  MATH  Google Scholar 

  38. de Sampaio PAB, Junior MAG, Lapa CMF (2008) A cfd approach to the atmospheric dispersion of radionuclides in the vicinity of npps. Nucl Eng Des 238(1): 250–273

    Article  Google Scholar 

  39. Elias RN, Paraizo PLB, Coutinho ALGA (2008) Stabilized edge-based finite element computation of gravity currents in lock-exchange configurations. Int J Numer Methods Fluids 57(9): 1137–1152

    Article  MATH  MathSciNet  Google Scholar 

  40. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MATH  MathSciNet  Google Scholar 

  41. Gravemeier V, Lenz S, Wall WA (2007) Variational multiscale methods for incompressible flows. Int J Comput Sci Math 1: 444–466

    Article  MATH  MathSciNet  Google Scholar 

  42. Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41(3): 371–378

    Article  MATH  MathSciNet  Google Scholar 

  43. Guasch O, Codina R (2007) A heuristic argument for the sole use of numerical stabilization with no physical les modeling in the simulation of incompressible turbulent flows. Submitted

  44. Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Eng 196: 2413–2430

    Article  MATH  MathSciNet  Google Scholar 

  45. Gamnitzer P, Gravemeier V, Wall WA (2010) Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow. Comput Methods Appl Mech Eng 199: 819–827

    Article  MATH  MathSciNet  Google Scholar 

  46. Gravemeier V, Gee MW, Kronbichler M, Wall WA (2010) An Algebraic Variational Multiscale–Multigrid method for large eddy simulation of turbulent flow. Comput Methods Appl Mech Eng 199(13–16): 853–864

    Article  MATH  MathSciNet  Google Scholar 

  47. Lins EF, Elias RN, Guerra GM, Rochinha FA, Coutinho ALGA (2009) Edge-based finite element implementation of the residual-based variational multiscale method. Int J Numer Methods Fluids 61: 1–22

    Article  MATH  MathSciNet  Google Scholar 

  48. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430

    Article  MATH  Google Scholar 

  49. Hsu MC, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840

    Article  MATH  MathSciNet  Google Scholar 

  50. Valli AMP, Carey GF, Coutinho ALGA (2005) Control strategies for timestep selection in FE simulation of incompressible flows and coupled reaction–convection–diffusion processes. Int J Numer Methods Fluids 47: 201–231

    Article  MATH  MathSciNet  Google Scholar 

  51. Valli AMP, Elias RN, Carey GF, Coutinho ALGA (2009) PID adaptive control of incremental and arclength continuation in nonlinear applications. Int J Numerical Methods in Fluids 61: 1181–1200

    Article  MATH  MathSciNet  Google Scholar 

  52. Cruchaga MA, Celentano DJ, Tezduyar TE (2002) Computation of mould filling processes with a moving Lagrangian interface technique. Commun Numer Methods Eng 18: 483–493

    Article  MATH  Google Scholar 

  53. Martin JC, Moyce WJ (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plane. Phil Trans R Soc Lond, Ser A 244: 312–324

    Article  MathSciNet  Google Scholar 

  54. Greaves DM (2005) Simulation of viscous water column collapse using adapting hierarchical grids. Int J Numer Methods Fluids 50(6): 693–711

    Article  Google Scholar 

  55. Cruchaga MA, Celentano DJ, Tezduyar TE (2005) Moving-interface computations with the edge-tracked interface locator technique (ETILT). Int J Numer Methods Fluids 47: 451–469

    Article  MATH  Google Scholar 

  56. Elias RN, Coutinho ALGA, Martins MAD (2006) Inexact Newton-type methods for the solution of steady incompressible viscoplastic flows with the SUPG/PSPG finite element formulation. Comput Methods Appl Mech Eng 195: 3145–3167

    Article  MATH  MathSciNet  Google Scholar 

  57. Elias RN, Martins MAD, Coutinho ALGA (2005) Parallel edge-based inexact Newton solution of steady incompressible 3D Navier–Stokes equations. Lecture notes in computer science, vol 3648. Springer, Berlin, pp 1237–1245

  58. Paraview, http://www.paraview.org/, last visited: 02/02/2010

  59. Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206: 363–393

    Article  MATH  MathSciNet  Google Scholar 

  60. Kleefsman KMT (2005) Water impact loading on offshore structures: a numerical study. Ph.D. Thesis, University of Groningen, Groningen

  61. SPH European Research Interest Community (2010) http://wiki.manchester.ac.uk/spheric/index.php/SPHERIC_Home_Page, visited February 9th

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro L. G. A. Coutinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lins, E.F., Elias, R.N., Rochinha, F.A. et al. Residual-based variational multiscale simulation of free surface flows. Comput Mech 46, 545–557 (2010). https://doi.org/10.1007/s00466-010-0495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0495-z

Keywords

Navigation