Skip to main content
Log in

Detection of branching points in noisy processes

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Processes in engineering mechanics often contain branching points at which the system can follow different physical paths. In this paper a method for the detection of these branching points is proposed for processes that are affected by noise. It is assumed that a bundle of process records are available from numerical simulations or from experiments, and branching points are concealed by the noise of the process. The bundle of process records is then evaluated at a series of discrete values of the independent process coordinates. At each discrete point of the process, the associated point set of process values is investigated with the aid of cluster analysis. The detected branching points are verified with a recursive algorithm. The revealed information about the branching points can be used to identify the physical and mechanical background for the branching. This helps to better understand a mechanical system and to design it optimal for a specific purpose. The proposed method is demonstrated by means of both a numerical example and a practical example of a crashworthiness investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

Branching point

C :

Cluster (point set)

\({\tilde{C}}\) :

Fuzzy cluster (discrete fuzzy set)

|C|:

Cardinality of cluster C

\({d\left(\underline{z}_{1},\underline{z}_{2}\right)}\) :

Distance between \({\underline{z}_{1}}\) and \({\underline{z}_{2}}\)

\({\mathbb{\underline{D}}}\) :

Real-valued domain of process coordinates

f, →:

Mapping

G :

Quality measure for cluster configuration

L U , L SC :

Length of record for check of uncertainty and silhouette coefficient, respectively

M :

Set

O(.):

Set of outliers

p(.):

Representative process record

P(.):

Process group

SC :

Silhouette coefficient

U :

Uncertainty

v :

Velocity

\({\underline{x}(.)}\) :

Mechanical input quantities

\({\underline{z}(.)}\) :

Process variables

X, Z:

Random variables

X ~ (.):

Specification of the distribution of X according to (.)

\({\underline{\mathbb{Z}}}\) :

Real-valued domain of process variables

|:

For which the following holds

ε :

Noise

\({\underline{\theta}}\) :

Process coordinates

μ :

Membership value according to fuzzy set theory

τ :

Single process coordinate

(a, b, c, . . .):

Vector with elements a, b, c, . . .

(a, b):

Open interval with limits a and b

(z, μ):

Value pair with elements z and μ

[a, b]:

Closed interval with bounds a and b

{a, b, c}:

Set with elements a, b, c

References

  1. Argyris JH, Mlejnek H-P (1991) Dynamics of structures, volume V of Texts on computational mechanics. Elsevier, Amsterdam

    Google Scholar 

  2. Bathe K-J (1991) Finite element procedures, vols 1, 2. Prentice-Hall, Upper Saddle River

    Google Scholar 

  3. Beer M, Liebscher M (2008) Designing robust structures—a nonlinear simulation based approach. Special Issue Comput Struct 86(10): 1102–1122

    Google Scholar 

  4. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithmn. Comput Geosci 10: 191–203

    Article  Google Scholar 

  5. Bezdek, JC, Pal, SK (eds) (1992) Fuzzy models for pattern recognition—methods that search for structures in data. IEEE Press, Piscataway

    Google Scholar 

  6. Deodatis, G, Spanos, PD (eds) (2007) Computational stochastic mechanics. Millpress, Rotterdam

    Google Scholar 

  7. Duran BS, Odell PL (1974) Cluster analysis—a survey. Lecture notes in economics and mathematical systems. Springer, Berlin

    Google Scholar 

  8. Eckstein U, Harte R, Krätzig WB, Wittek U (1987) Simulation of static and kinetic buckling of unstiffened and stiffened cooling tower shells. Eng Struct 9(1): 9–18

    Article  Google Scholar 

  9. Gandhi UN, Hu SJ (1995) Data-based approach in modeling automobile crash. Int J Impact Eng 16(1): 95–118

    Article  Google Scholar 

  10. Gath I, Geva AB (1989) Unsupervised optimal fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 11(7): 773–781

    Article  Google Scholar 

  11. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York. Revised Edition 2003, Dover Publications, Mineola

  12. Hallquist JO (1998) LS-DYNA theoretical manual. Livermore Software Technology Corporation, Livermore

    Google Scholar 

  13. Hartmann D, Breidt M, Nguyen VV, Stangenberg F, Höhler S, Schweizerhof K, Mattern S, Blankenhorn G, Möller B, Liebscher M (2008) Structural collapse simulation under consideration of uncertainty—Fundamental concept and results. Comput Struct 86(21–22): 2064–2078

    Article  Google Scholar 

  14. Hilburger MW, Starnes JH Jr (2005) Buckling behavior of compression-loaded composite cylindrical shells with reinforced cutouts. Int J Non-Linear Mech 40(7): 1005–1021

    Article  MATH  Google Scholar 

  15. Höppner F, Klawonn F, Kruse R, Runkler T (1999) Fuzzy cluster analysis: methods for classification, data analysis and image recognition. Wiley, Chinchester

    MATH  Google Scholar 

  16. Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, Chinchester

    Google Scholar 

  17. Lee YS, Vakakis AF, Bergman LA, McFarland DM, Kerschen G (2005) Triggering mechanisms of limit cycle oscillations due to aeroelastic instability. J Fluids Struct 21(5–7): 485–529

    MATH  Google Scholar 

  18. Liebscher M (2007) Design and assessment of structures under uncertainty—solving the inverse problem with methods of the explorative data analysis. PhD thesis, TU Dresden, Institute for Statics and Dynamics of Structures, vol. 13 (in German), Dresden, Germany

  19. Litak G, Borowiec M, Friswell MI, Szabelski K (2008) Chaotic vibration of a quarter-car model excited by the road surface profile. Commun Nonlinear Sci Numer Simulation 13(7): 1373–1383

    Article  MathSciNet  Google Scholar 

  20. Livermore Software Technology Corp. (ed) (2008) 10th International LS-DYNA users conference, Dearborn, MI

  21. Möller B, Liebscher M, Schweizerhof K, Mattern S, Blankenhorn G (2008) Structural collapse simulation under consideration of uncertainty—improvement of numerical efficiency. Comput Struct 86(19–20): 1875–1884

    Article  Google Scholar 

  22. Möller B, Beer M (2004) Fuzzy randomness—uncertainty in civil engineering and computational mechanics. Springer, Berlin

    MATH  Google Scholar 

  23. Moens D, Vandepitte D (2005) A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput Methods Appl Mech Eng 194(1): 1527–1555

    Article  MATH  Google Scholar 

  24. Reitinger R, Ramm E (1995) Buckling and imperfection sensitivity in the optimization of shell structures. Thin-Walled Struct 23(1–4): 159–177

    Article  Google Scholar 

  25. Roux WJ, Stander N, Günther F, Müllerschön H (2006) Stochastic analysis of highly non-linear structures. Int J Numer Methods Eng 65(8): 1221–1242

    Article  MATH  Google Scholar 

  26. Ruspini EH (1969) A new approach to clustering. Inf Control 15(1): 22–32

    Article  MATH  Google Scholar 

  27. Safety Test Instrumentation Stds Comm. (2003) Instrumentation for impact test-part 1-electronic instrumentation (j211/1). Technical report, SAE

  28. Schenk CA, Schuëller GI (2005) Uncertainty assessment of large finite element systems. Springer, Berlin

    MATH  Google Scholar 

  29. Thiele M, Liebscher M, Graf W (2005) Fuzzy analysis as alternative to stochastic methods—a comparison by means of a crash analysis. In: Proceedings of the 4th German LS-DYNA forum, pp D–I–45–63, Bamberg

  30. VanMarcke E (1983) Random fields: analysis and synthesis. MIT Press, Cambridge

    Google Scholar 

  31. Vatutin VA, Zubkov AM (1987) Branching processes. I. J Math Sci 39(1): 2431–2475

    Article  MATH  Google Scholar 

  32. Vatutin VA, Zubkov AM (1993) Branching processes. II. J Math Sci 67(6): 3407–3485

    Article  MATH  MathSciNet  Google Scholar 

  33. Zimmermann H-J (1992) Fuzzy set theory and its applications. Kluwer, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Beer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, M., Liebscher, M. Detection of branching points in noisy processes. Comput Mech 45, 363–374 (2010). https://doi.org/10.1007/s00466-009-0458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0458-4

Keywords

Navigation