Skip to main content
Log in

An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper describes an Eulerian approach for partitioned fluid–structure simulations based on a fluid solver using regularly and adaptively refined Cartesian grids. The particular focus is on the efficient implementation and embedding of the fluid solver in the context of coupled simulations. Special subjects are the efficient layout of data structures and data access based on space-filling curves and the realisation of geometry and topology changes. In addition, a coupling environment is presented that allows for an easy and flexible coupling of flow and structure codes. Simulation results are provided for large particle movements within the drift ratchet scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MpCCI 3.0 (2007) Multidisciplinary simulations through code coupling. Fraunhofer SCAI, Sankt Augustin. http://www.mpcci.de/mpcci_manuals.html, manual

  2. Bader M, Bungartz HJ, Frank A, Mundani RP (2002) Space tree structures for PDE software. In: Sloot PMA, Tan CJK, Dongarra JJ, Hoekstra AG(eds) Proceedings of the international conference on computer science. LNCS, vol 2331. Springer, Heidelberg, pp 662–671

    Google Scholar 

  3. Bijl H, van Zuijlen AH, Bosscher S (2006) Two level algorithms for partitioned fluid–structure interaction computations. In: Wesseling P, Oñate E, Périaux J (eds) ECCOMAS CFD 2006, european conference on computational fluid dynamics, TU delft

  4. Blanke C (2004) Kontinuitätserhaltende Finite-Element-Diskretisierung der Navier–Stokes-Gleichungen. Diploma thesis, Fakultät für Mathematik, TU München

  5. Brenk M, Bungartz HJ, Mehl M, Mundani RP, Düster A, Scholz D (2005) Efficient interface treatment for fluid–structure interaction on cartesian grids. In: ECCOMAS COUPLED PROBLEMS 2005, Proceedings of the thematic conference on computational methods for coupled problems in science and engineering. International Center for Numerical Methods in Engineering (CIMNE)

  6. Brenk M, Bungartz HJ, Mehl M, Neckel T (2006) Fluid-structure interaction on cartesian grids: flow simulation and coupling environment. In: Bungartz HJ, Schäfer M(eds) Fluid–structure interaction. LNCSE, vol 53. Springer, Heidelberg, pp 233–269

    Google Scholar 

  7. Brenk M, Bungartz HJ, Mehl M, Muntean IL, Neckel T, Weinzierl T (2007) Numerical simulation of particle transport in a drift ratchet. SIAM J Sci Comput (in review)

  8. Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22: 745–762

    Article  MATH  MathSciNet  Google Scholar 

  9. Düster A, Bröker H, Heidkamp H, Heißerer U, Kollmannsberger S, Krause R, AMuthler, Niggl A, Nübel V, Rücker M, Scholz D (2004) AdhoC4—User’s guide. Lehrstuhl für Bauinformatik, TU München

  10. Emans M, Zenger C (2005) An efficient method for the prediction of the motion of individual bubbles. Int J Comput Fluid Dyn 19: 347–356

    Article  MATH  MathSciNet  Google Scholar 

  11. Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190: 3247–3270

    Article  MATH  Google Scholar 

  12. Geller S, Tölke J, Krafczyk M (2006) Lattice-Boltzmann method on quadtree type grids for fluid–structure interaction. In: Bungartz HJ, Schäfer M(eds) Fluid-structure interaction. LNCSE, vol 53. Springer, Heidelberg, pp 270–293

    Chapter  Google Scholar 

  13. Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Wiley,

  14. Griebel M, Zumbusch GW (1998) Hash-storage techniques for adaptive multilevel solvers and their domain decomposition parallelization. In: Mandel J, Farhat C, Cai XC (eds) Proceedings of domain decomposition methods 10, DD10, vol 218. AMS, Providence, pp 279–286. http://citeseer.ist.psu.edu/46737.html

  15. Günther F, Mehl M, Pögl M, Zenger C (2006) A cache-aware algorithm for PDEs on hierarchical data structures based on space-filling curves. SIAM J Sci Comput 28(5): 1634–1650

    Article  MATH  MathSciNet  Google Scholar 

  16. Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys Fluids 8(12): 2182–2189

    Article  Google Scholar 

  17. Kettner C, Reimann P, Hänggi P, Müller F (2000) Drift ratchet. Phys Rev E 61: 312–323

    Article  Google Scholar 

  18. Krahnke A (2005) Adaptive Verfahren höherer Ordnung auf cache-optimalen Datenstrukturen für dreidimensionale Probleme, Dissertation. TU München

  19. Masud A, Hughes TJR (1997) A space–time galerkin/least-squares finite element formulation of the navier–stokes equations for moving domain problems. Comput Methods Appl Mech Eng 146: 91–126

    Article  MATH  MathSciNet  Google Scholar 

  20. Matthias S, Müller F (2003) Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets. lett Nat 424: 53–57

    Article  Google Scholar 

  21. Mehl M (2006) Cache-optimal data-structures for hierarchical methods on adaptively refined space-partitioning grids. In: International conference on high performance computing and communications 2006, HPCC06. LNCS, vol 4208. Springer, Heidelberg, pp 138–147

  22. Mehl M, Weinzierl T, Zenger C (2006) A cache-oblivious self-adaptive full multigrid method. Numer Linear Algebra 13(2–3): 275–291

    Article  MathSciNet  Google Scholar 

  23. Michler C (2005) Efficient numerical methods for fluid–structure interaction, Ph D thesis. PrintPartners Ipskamp

  24. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37: 239–261

    Article  MathSciNet  Google Scholar 

  25. Pögl M (2004) Entwicklung eines cache-optimalen 3D Finite-Element-Verfahrens für große Probleme, Fortschritt-Berichte VDI, Informatik Kommunikation 10, vol 745. VDI Verlag, Düsseldorf

  26. Sagan H (1994) Space-filling curves. Springer, New York

    MATH  Google Scholar 

  27. Scholz D, Kollmannsberger S, Düster A, Rank E (2006) Thin solids for fluid–structure interaction. In: Bungartz HJ, Schäfer M(eds) Fluid–structure interaction. LNCSE, vol 53. Springer, Heidelberg, pp 294–335

    Google Scholar 

  28. Tomé MF, McKee S (1994) GENSMAC: a computational marker and cell method for free surface flows in general domains. J Comput Phys 110: 171–186

    Article  MATH  Google Scholar 

  29. Turek S, Schäfer M (1996) Benchmark computations of laminar flow around a cylinder. In: Hirschel EH (ed) Flow simulation with high-performance computers II, vol 52. NNFM, Vieweg

  30. Verstappen RWCP, Veldman AEP (2003) Symmetry-preserving discretization of turbulent channel flow. J Comput Phys 187: 343–368

    Article  MATH  MathSciNet  Google Scholar 

  31. Vierendeels J (2006) Implicit coupling of partitioned fluid–structure interaction solvers using reduced-order models. In: Bungartz HJ, Schäfer M(eds) Fluid–Structure interaction, modelling, simulation, optimisation. Springer, Heidelberg, pp 1–18

    Google Scholar 

  32. Wagner T (2005) Randbehandlung höherer Ordnung für ein cache-optimales Finite-Element-Verfahren auf kartesischen Gittern. Diploma thesis, Institut für Informatik, TU München

  33. Wang W (2001) Special bilinear quadrilateral elements for locally refined finite element grids. SIAM J Sci Comput 22(6): 2029–2050

    Article  MATH  Google Scholar 

  34. Yigit S, Heck M, Sternel DC, Schäfer M (2007) Efficiency of fluid–structure interaction simulations with adaptive underrelaxation and multigrid acceleration. Int J Multiphys 1: 85–99

    Article  Google Scholar 

  35. Zumbusch G (2001) Adaptive parallel multilevel methods for partial differential equations. Habilitationsschrift, Universität Bonn, Bonn

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Mehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehl, M., Brenk, M., Bungartz, HJ. et al. An Eulerian approach for partitioned fluid–structure simulations on Cartesian grids. Comput Mech 43, 115–124 (2008). https://doi.org/10.1007/s00466-008-0290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0290-2

Keywords

Navigation