Skip to main content
Log in

Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a multiple scale approach for modeling multiple crack growth in human cortical bone under tension. The Haversian microstructure, a four phase composite, is discretized by a classical finite element method fed with the morphological and mechanical characteristics, experimentally measured, to mimic human bone heterogeneity at the micro scale. The fracture strength of human bone, exhibiting aging signs, is investigated through tensional percolation simulations in statistical microstructures. The cracks are initiated at the micro scale at locations where a critical elastic-damage strain-driven criterion is met. The cracks, modeled by the eXtended Finite Element Method, are then grown until complete failure when a critical stress intensity factor criterion is attained. The model provides the fracture strength and the global response at the material scale and the stress–strain fields at the microscopic level. The model creates a constitutive law at the material scale and emphasizes the influence of the microstructure on bone failure and fracture risk assessment. These results are validated against experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Katz JL (1976) Hierarchical modeling of compact haversian bone as a fiber reinforced material. Adv Bioeng ASME 17–18

  2. Aoubiza B, Crolet JM, Meunier A (1996) On the mechanical characterization of compact bone structure using the homogenization theory. J Biomech 29(12): 1539–1547

    Google Scholar 

  3. Gottesman G, Hashin Z (1980) Analysis of viscoelastic behaviour of bones on the basis of microstructure. J Biomech 13: 89–96

    Article  Google Scholar 

  4. Hogan HA (1992) Micromechanics modeling of haversian cortical bone properties. J Biomech 25(5): 549–556

    Article  Google Scholar 

  5. Currey JD (2003) The many adaptations of bone. J Biomech 36: 1485–1495

    Article  Google Scholar 

  6. Wright TM, Hayes WC (1977) Fracture mechanics parameters for compact bone—effects of density and specimen thickness. J Biomech 10: 419–430

    Article  Google Scholar 

  7. Hui SL, Slemenda CM, Johnston CC (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81: 1804–1809

    Article  Google Scholar 

  8. Schaffler MB, Burr DB (1988) Stiffness of compact bone effect of porosity and density. J Biomech 21: 13–16

    Article  Google Scholar 

  9. O’Brien FJ, Taylor D, Lee TC (2005) The effect of bone microstructure on the initiation and growth of microcracks. J Orthop Res 23: 475–480

    Article  Google Scholar 

  10. Mohsin S, O’Brien FJ, Lee TC (2006) Osteonal crack barriers in ovine compact bone. J Anat 208: 81–89

    Article  Google Scholar 

  11. Nalla RK, Kinney JH, Ritchie RO (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2: 164–168

    Article  Google Scholar 

  12. Katz JL (1971) Hard tissue as composite material—i. Bounds on the elastic behavior. J Biomech 4(5): 455–473

    Article  Google Scholar 

  13. Dong XN, Zhong XN, Huang YY, Guo XE (2005) A generalized self-consisitent estimate for the effective elastic moduli for fiber-reinforced composite materials with multiple transversely isotropic inclusions. Int J Mech Sci 47(6): 922–940

    Article  Google Scholar 

  14. Dong XN, Guo XE (2006) Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. J Biomech Eng Trans ASME 128(3): 309–316

    Article  MathSciNet  Google Scholar 

  15. Prendergast PJ, Huiskes R (1996) Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. J Biomech Eng Trans ASME 118: 240–246

    Article  Google Scholar 

  16. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 610–620

    Article  MathSciNet  Google Scholar 

  17. Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50(4): 993–1013

    Article  MATH  Google Scholar 

  18. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39: 289–314

    Article  MathSciNet  Google Scholar 

  19. Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190(51–52): 6825–6846

    Article  MATH  Google Scholar 

  20. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1): 131–150

    Article  MATH  Google Scholar 

  21. Budyn E, Zi G, Moës N, Belytschko T (2004) A method for multiple crack growth in brittle materials without remeshing. Int J Numer Methods Eng 61(10): 1741–1770

    Article  MATH  Google Scholar 

  22. Budyn E, Hoc T (2007) Multiple scale modeling of cortical bone fracture in tension using X-FEM. Revue Européenne de Mécanique Numrique (Eur J Comput Mech) 16: 213–236

    Article  Google Scholar 

  23. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1): 12–49

    Article  MathSciNet  MATH  Google Scholar 

  24. Sethian JA (1999) Level sets methods & fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science. Cambridge University Press, Cambridge

    Google Scholar 

  25. Burchard P, Cheng LT, Merriman B, Osher S (2001) Rmotion of curves in three spacial dimensions using a level set approach. Int J Numer Methods Fluids 170: 720–741

    MathSciNet  MATH  Google Scholar 

  26. Osher S, Cheng LT, Kang M, Shim Y, Tsai YH (2002) Geometricoptics in a phase-space-based level set and eulerian framework. J Comput Phys 179(2): 622–648

    Article  MathSciNet  MATH  Google Scholar 

  27. Ventura G, Budyn E, Belytschko T (2003) Meshfree and particle methods and their applications. Int J Numer Methods Eng 58: 1571–1792

    Article  MATH  Google Scholar 

  28. Moran B, Shih CF (1987) A general treatment of crack tip contour integrals. Int J Fract 35: 295–310

    Article  Google Scholar 

  29. Torquato S (2000) Random heterogeneous media—microstructure and macroscopic properties—interdisciplinary applied mathematics—mechanics and materials. Springer, New York

    Google Scholar 

  30. ABAQUS (2004) User’s manual. Hibbit, Version 6.3, Karlsson & Sorensen, Providence

  31. MATLAB7 (2006) User’s manual. MATLAB, Version 7, The MathWorks, USA

  32. GMSH (2006) User’s manual. GMSH, Version 62, Geuzaine & Remacle, Cleveland USA; Louvain Belgium

  33. Fan Z, Swadener E, Rho JY, Roy ME, Pharr GM (2002) Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthop Res 20: 806–810

    Article  Google Scholar 

  34. Hoc T, Henry L, Verdier M, Aubry D, Sedel L, Meunier A (2006) Effect of microstructure on the mechanical properties of haversian cortical bone. Bone 38: 466–474

    Article  Google Scholar 

  35. Henry L, Hoc T, Budyn E (2007) Microextensometry and mechanical behaviour of haversian cortical bone. Eur J Comput Mech (submitted)

  36. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6): 393–405

    Article  Google Scholar 

  37. Katz JL, Ukraincik K (1971) On the anisotropic elastic properties of hydroxyapatite. J Biomech 29(4): 221–227

    Article  Google Scholar 

  38. Shelton DR, Martin RB, Stover SM, Gibeling JC (2003) Transverse fatigue crack propagation behavior in equine cortical bone. J Mater Sci 38: 3501–3508

    Article  Google Scholar 

  39. Hazenberg JG, Taylor D, Lee TC (2006) Mechanisms of short crack growth at constant stress in bone. Biomaterials 27: 2114–2122

    Article  Google Scholar 

  40. Lakes R, Saha S (1979) Cement line motion in bone. Nature 204: 501–503

    Google Scholar 

  41. Sabelman EE, Koran P, Diep N, Lineaweaver WC (1997) Collagen/hyaluronic acid matrices for connective tissue repair. In: First Smith & Nephew international symposium: advances in tissues engineering and biomaterials

  42. Sumner DR (2006) Private communications

  43. Rho JY, Zioupos P, Currey JD, Pharr GM (2002) Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J Biomech 35: 189–198

    Article  Google Scholar 

  44. Pattin CA, Calet WE, Carter DR (1996) Cyclic mechanical property degradation during fatigue loading of cortical bone. J Biomech 29: 69–79

    Article  Google Scholar 

  45. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37: 27–35

    Article  Google Scholar 

  46. Budyn E, Hoc T (2006) Multiple scale modeling for crack growth in cortical bone under tension using the extended finite element method. Revue Européenne de Mécanique Numérique (Eur J Finite Element Methods), Special Issue (submitted)

  47. Paris PC, Sih SC (1965) Stress analysis of cracks. In: Fracture toughness and testing and its applications. Society for Testing and Materials, Philadelphia, pp 30–83

  48. Yau Y, Wang S, Corten H (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47: 335–341

    MATH  Google Scholar 

  49. Bocca P, Carpinteri A, Valente S (1991) Mixed mode fracture of concrete. Int J Solids Struct 27: 1139–1153

    Article  Google Scholar 

  50. Nguyen QS, Stolz S (1985) ENDOMAGEMENT, FATIGUE, RUPTUE.—sur le problème en vitesse de propagation de fissure et de déplacement en rupture fragile ou ductile. note de nguyen quoc son et claude stolz, présentée par paul germain. Comptes- Rendus de l’Académie des Sciences de Paris, t. 301, Série II(10): 661–664

  51. Nguyen QS, Stolz C, Debruyne G (1990) Energy methods in fracture mechanics: stability, bifurcation and second variations. Eur J Mech A/Solids 2: 157–173

    MathSciNet  Google Scholar 

  52. Suo XZ, Combescure A (1989) Sur une formulation mathématique de la dérivée seconde de l’énergie potentielle en théorie de la rupture fragile. Comptes-Rendus de l’Académie des Sciences de Paris, t. 308, Série II:1119–1122

  53. Suo XZ, Combescure A (1992) Double virtual crack extension method for crack growth stability assessment. Int J Fract 57: 127–150

    Article  Google Scholar 

  54. Suo XZ, Valeta MP (1998) Second variation of energy and an associated line independent integral in fracture mechanics. ii numerical validations. Eur J Mech A/Solids 17(4): 541–565

    Article  MathSciNet  MATH  Google Scholar 

  55. Stazi FL, Budyn E, Chessa J, Belytschko T (2002) An extended finite element method with higher-order elements for curved cracks. Comput Mech 31: 38–48

    Article  Google Scholar 

  56. Chessa J, Wang HW, Belytschko T (2003) On construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57: 1015–1038

    Article  MATH  Google Scholar 

  57. Kienzler R, Herrmann G (2002) Fracture criteria based on local propertiesof the eshelby tensor. Mech Res Commun 29(6): 521–527

    Article  MathSciNet  MATH  Google Scholar 

  58. Rubinstein A (1996) Macrocrack-microdefect interaction. J Appl Mech 53: 505–510

    Article  Google Scholar 

  59. Demir I, Zbib HM, Khaleel M (2001) Microscopic analysis of crack propagation for multiple cracks, inclusions and voids. Theor Appl Fract Mech 36: 147–164

    Article  Google Scholar 

  60. Deng H, Nemat-Nasser S (1992) Bridging multi-scale method for localization problems. Mech Mater 13: 15–36

    Article  Google Scholar 

  61. Nemat-Nasser S, Hori M (1987) Toughening by partial or full bridging of cracks in ceramics and fiber reinforced composites. Mech Mater 6: 245–269

    Article  Google Scholar 

  62. Jones AC, Sheppard AP, Sok RM, Arns CH, Limaye A, Averdunk H, Brandwood A, Sakellariou A, Senden TJ, Milthorpe BK, Knackstedt MA (2004) Three-dimensional analysis of cortical bone structure using X-ray micro-computed tomography. Phys A 339: 125–130

    Article  Google Scholar 

  63. Qiu S, Rao DS, Fyhrie DP, Palnitkar S, Parfitt AM (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37: 10–15

    Article  Google Scholar 

  64. Bloebaum RD, Liau DW, Lester DK, Rosenbaum TG (2006) Dual-energy x-ray absorptiometry measurement and accuracy of bone mineral after unilateral total hip arthroplasty. J Arthroplasty 21(4): 612–622

    Article  Google Scholar 

  65. Cooper D, Turinsky A, Sensen C, Hallgrimsson B (2007) Effect of voxel size on 3d micro-ct analysis of cortical bone porosity. Calcif Tissue Int 80: 211–219

    Article  Google Scholar 

  66. Advani SH, Lee TS, Martin RB (1987) Analysis of crack arrest by cement lines in osteonal bone. In: Proceedings of ASME Annu Winter Meeting, vol 3, pp 57–581

  67. Guo XE, He MY, Goldstein SA (1995) Analysis of viscoelastic behaviour of bones on the basis of microstructure. Bioeng Conf ASME, BED- 29: 112–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Budyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budyn, E., Hoc, T. & Jonvaux, J. Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach. Comput Mech 42, 579–591 (2008). https://doi.org/10.1007/s00466-008-0283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0283-1

Keywords

Navigation