Skip to main content

Advertisement

Log in

Frailty as a Superior Predictor of Dysphagia and Surgically Placed Feeding Tube Requirement After Anterior Cervical Discectomy and Fusion Relative to Age

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Frailty is a measure of physiological reserve that has been demonstrated to be a discriminative predictor of worse outcomes across multiple surgical subspecialties. Anterior cervical discectomy and fusion (ACDF) is one of the most common neurosurgical procedures in the United States and has a high incidence of postoperative dysphagia. To determine the association between frailty and dysphagia after ACDF and compare the predictive value of frailty and age. 155,300 patients with cervical stenosis (CS) who received ACDF were selected from the 2016–2019 National Inpatient Sample (NIS) utilizing International Classification of Disease, tenth edition (ICD-10) codes. The 11-point modified frailty index (mFI-11) was used to stratify patients based on frailty: mFI-11 = 0 was robust, mFI-11 = 1 was prefrail, mFI-11 = 2 was frail, and mFI-11 = 3 + was characterized as severely frail. Demographics, complications, and outcomes were compared between frailty groups. A total of 155,300 patients undergoing ACDF for CS were identified, 33,475 (21.6%) of whom were frail. Dysphagia occurred in 11,065 (7.1%) of all patients, and its incidence was significantly higher for frail patients (OR 1.569, p < 0.001). Frailty was a risk factor for postoperative complications (OR 1.681, p < 0.001). Increasing frailty and undergoing multilevel ACDF were significant independent predictors of negative postoperative outcomes, including dysphagia, surgically placed feeding tube (SPFT), prolonged LOS, non-home discharge, inpatient death, and increased total charges (p < 0.001 for all). Increasing mFI-11 score has better prognostic value than patient age in predicting postoperative dysphagia and SPFT after ACDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barsa P, Suchomel P, Buchvald P, Kolárová E, Svobodník A. Multiple-level instrumented anterior cervical fusion: a risk factor for pseudoarthrosis? A prospective study with a minimum of 3-year follow-up. Acta Chir Orthop Traumatol Cech. 2004;71(3):137–41.

    CAS  PubMed  Google Scholar 

  2. Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine. 2015;40(12):E675-693. https://doi.org/10.1097/BRS.0000000000000913.

    Article  PubMed  Google Scholar 

  3. Saifi C, Fein AW, Cazzulino A, et al. Trends in resource utilization and rate of cervical disc arthroplasty and anterior cervical discectomy and fusion throughout the United States from 2006 to 2013. Spine J Off J North Am Spine Soc. 2018;18(6):1022–9. https://doi.org/10.1016/j.spinee.2017.10.072.

    Article  Google Scholar 

  4. Stieber JR, Brown K, Donald GD, Cohen JD. Anterior cervical decompression and fusion with plate fixation as an outpatient procedure. Spine J Off J North Am Spine Soc. 2005;5(5):503–7. https://doi.org/10.1016/j.spinee.2005.01.011.

    Article  Google Scholar 

  5. Perez-Roman RJ, Luther EM, McCarthy D, et al. National trends and correlates of dysphagia after anterior cervical discectomy and fusion surgery. Neurospine. 2021;18(1):147–54. https://doi.org/10.14245/ns.2040452.226.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maroon JC, Bost JW, Petraglia AL, et al. Outcomes after anterior cervical discectomy and fusion in professional athletes. Neurosurgery. 2013;73(1):103–12. https://doi.org/10.1227/01.neu.0000429843.68836.91 (discussion 112).

    Article  PubMed  Google Scholar 

  7. Omidi-Kashani F, GhayemHasankhani E, Ghandehari R. Impact of age and duration of symptoms on surgical outcome of single-level microscopic anterior cervical discectomy and fusion in the patients with cervical spondylotic radiculopathy. Neurosci J. 2014. https://doi.org/10.1155/2014/808596.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee R, Lee D, Gowda NB, et al. Increased rates of septic shock, cardiac arrest, and mortality associated with chronic steroid use following anterior cervical discectomy and fusion for cervical stenosis. Int J Spine Surg. 2020;14(5):649–56. https://doi.org/10.14444/7095.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh K, Marquez-Lara A, Nandyala SV, Patel AA, Fineberg SJ. Incidence and risk factors for dysphagia after anterior cervical fusion. Spine. 2013;38(21):1820–5. https://doi.org/10.1097/BRS.0b013e3182a3dbda.

    Article  PubMed  Google Scholar 

  10. Epstein NE. A review of complication rates for Anterior Cervical Diskectomy and Fusion (ACDF). Surg Neurol Int. 2019;10:100. https://doi.org/10.25259/SNI-191-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yue WM, Brodner W, Highland TR. Persistent swallowing and voice problems after anterior cervical discectomy and fusion with allograft and plating: a 5- to 11-year follow-up study. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2005;14(7):677–82. https://doi.org/10.1007/s00586-004-0849-3.

    Article  Google Scholar 

  12. Segebarth B, Datta JC, Darden B, et al. Incidence of dysphagia comparing cervical arthroplasty and ACDF. SAS J. 2010;4(1):3–8. https://doi.org/10.1016/j.esas.2009.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rihn JA, Kane J, Albert TJ, Vaccaro AR, Hilibrand AS. What is the incidence and severity of dysphagia after anterior cervical surgery? Clin Orthop. 2011;469(3):658–65. https://doi.org/10.1007/s11999-010-1731-8.

    Article  PubMed  Google Scholar 

  14. Leonard R, Belafsky P. Dysphagia following cervical spine surgery with anterior instrumentation: evidence from fluoroscopic swallow studies. Spine. 2011;36(25):2217–23. https://doi.org/10.1097/BRS.0b013e318205a1a7.

    Article  PubMed  Google Scholar 

  15. Miles A, Jamieson G, Shasha L, Davis K. Characterizing dysphagia after spinal surgery. J Spinal Cord Med. 2021;44(5):733–41. https://doi.org/10.1080/10790268.2019.1665613.

    Article  PubMed  Google Scholar 

  16. Wewel JT, Brahimaj BC, Kasliwal MK, Traynelis VC. Perioperative complications with multilevel anterior and posterior cervical decompression and fusion. J Neurosurg Spine. 2019. https://doi.org/10.3171/2019.6.SPINE198.

    Article  PubMed  Google Scholar 

  17. Yin DH, Yang XM, Huang Q, et al. Pharyngoesophageal perforation 3 years after anterior cervical spine surgery: a rare case report and literature review. Eur Arch Oto-Rhino-Laryngol Off J Eur Fed Oto-Rhino-Laryngol Soc EUFOS Affil Ger Soc Oto-Rhino-Laryngol—Head Neck Surg. 2015;272(8):2077–82. https://doi.org/10.1007/s00405-014-3483-7.

    Article  Google Scholar 

  18. Shem K, Castillo K, Wong S, Chang J. Dysphagia in individuals with tetraplegia: incidence and risk factors. J Spinal Cord Med. 2011;34(1):85–92. https://doi.org/10.1179/107902610X12911165974981.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Krnacik MJ, Heggeness MH. Severe angioedema causing airway obstruction after anterior cervical surgery. Spine. 1997;22(18):2188–90. https://doi.org/10.1097/00007632-199709150-00019.

    Article  CAS  PubMed  Google Scholar 

  20. Olsson EC, Jobson M, Lim MR. Risk factors for persistent dysphagia after anterior cervical spine surgery. Orthopedics. 2015;38(4):e319-323. https://doi.org/10.3928/01477447-20150402-61.

    Article  PubMed  Google Scholar 

  21. Sarbinowska J, Wiatrak B, Waśko-Czopnik D. Esophageal motility disorders in the natural history of acid-dependent causes of dysphagia and their influence on patients’ quality of life-a prospective cohort study. Int J Environ Res Public Health. 2021;18(21):11138. https://doi.org/10.3390/ijerph182111138.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elsamadicy AA, Koo AB, David WB, et al. Ramifications of postoperative dysphagia on health care resource utilization following elective anterior cervical discectomy and interbody fusion for cervical spondylotic myelopathy. Clin Spine Surg. 2021. https://doi.org/10.1097/BSD.0000000000001241.

    Article  Google Scholar 

  23. Cameron K, Lawless MH, Conway R, et al. Risk factors for dysphagia following a cervical fusion in a trauma population. Cureus. 2018. https://doi.org/10.7759/cureus.3489.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nguyen S, Sherrod BA, Paziuk TM, et al. Predictors of dysphagia after anterior cervical discectomy and fusion: a prospective multicenter study. Spine. 2021. https://doi.org/10.1097/BRS.0000000000004279.

    Article  PubMed  Google Scholar 

  25. Wilson JRF, Badhiwala JH, Jiang F, et al. The impact of older age on functional recovery and quality of life outcomes after surgical decompression for degenerative cervical myelopathy: results from an ambispective, propensity-matched analysis from the CSM-NA and CSM-I international, multi-center studies. J Clin Med. 2019;8(10):E1708. https://doi.org/10.3390/jcm8101708.

    Article  Google Scholar 

  26. Azizkhanian I, Rothbaum M, Alcantara R, et al. Demographics and outcomes of interhospital neurosurgical transfer patients undergoing spine surgery. World Neurosurg. 2020;144:e221–6. https://doi.org/10.1016/j.wneu.2020.08.080.

    Article  PubMed  Google Scholar 

  27. Dicpinigaitis AJ, Hanft S, Cooper JB, et al. Comparative associations of baseline frailty status and age with postoperative mortality and duration of hospital stay following metastatic brain tumor resection. Clin Exp Metastasis. 2022. https://doi.org/10.1007/s10585-021-10138-3.

    Article  PubMed  Google Scholar 

  28. Walid MS, Robinson JS. Economic impact of comorbidities in spine surgery. J Neurosurg Spine. 2011;14(3):318–21. https://doi.org/10.3171/2010.11.SPINE10139.

    Article  PubMed  Google Scholar 

  29. Patel AJ, Sivaganesan A, Bollo RJ, Brayton A, Luerssen TG, Jea A. Assessment of the impact of comorbidities on perioperative complications in pediatric neurosurgery. J Neurosurg Pediatr. 2014;13(5):579–82. https://doi.org/10.3171/2014.1.PEDS13372.

    Article  PubMed  Google Scholar 

  30. Eskesen V, Rosenørn J, Schmidt K. The impact of rebleeding on the life time probabilities of different outcomes in patients with ruptured intracranial aneurysms a theoretical evaluation. Acta Neurochir (Wien). 1988;95(3–4):99–101. https://doi.org/10.1007/BF01790768.

    Article  CAS  PubMed  Google Scholar 

  31. Dominguez JF, Shah S, Ampie L, et al. Spinal epidural abscess patients have higher modified frailty indexes than back pain patients on emergency room presentation: a single-center retrospective case-control study. World Neurosurg. 2021;152:e610–6. https://doi.org/10.1016/j.wneu.2021.06.035.

    Article  PubMed  Google Scholar 

  32. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. Scientific World J. 2001;1:323–36. https://doi.org/10.1100/tsw.2001.58.

    Article  CAS  Google Scholar 

  33. Ng C, Dominguez JF, Hosein-Woodley R, et al. Utility of frailty as a predictor of acute kidney injury in patients with aneurysmal subarachnoid hemorrhage. Interv Neuroradiol J Peritherapeutic Neuroradiol Surg Proced Relat Neurosci. 2022. https://doi.org/10.1177/15910199221076626.

    Article  Google Scholar 

  34. Wilson JRF, Badhiwala JH, Moghaddamjou A, Yee A, Wilson JR, Fehlings MG. Frailty is a better predictor than age of mortality and perioperative complications after surgery for degenerative cervical myelopathy: an analysis of 41,369 patients from the NSQIP database 2010–2018. J Clin Med. 2020;9(11):E3491. https://doi.org/10.3390/jcm9113491.

    Article  CAS  Google Scholar 

  35. Adams P, Ghanem T, Stachler R, Hall F, Velanovich V, Rubinfeld I. Frailty as a predictor of morbidity and mortality in inpatient head and neck surgery. JAMA Otolaryngol-Head Neck Surg. 2013;139(8):783–9. https://doi.org/10.1001/jamaoto.2013.3969.

    Article  PubMed  Google Scholar 

  36. Kazim SF, Dicpinigaitis AJ, Bowers CA, et al. Frailty status is a more robust predictor than age of spinal tumor surgery outcomes: a NSQIP analysis of 4,662 patients. Neurospine. 2022. https://doi.org/10.14245/ns.2142770.385.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ali R, Schwalb JM, Nerenz DR, Antoine HJ, Rubinfeld I. Use of the modified frailty index to predict 30-day morbidity and mortality from spine surgery. J Neurosurg Spine. 2016;25(4):537–41. https://doi.org/10.3171/2015.10.SPINE14582.

    Article  PubMed  Google Scholar 

  38. Fisher C, Tee J. Editorial: the utility of the modified frailty index for risk stratification in patients undergoing spine surgery. J Neurosurg Spine. 2016;25(4):535–6. https://doi.org/10.3171/2016.1.SPINE151261.

    Article  PubMed  Google Scholar 

  39. Ahmed AK, Goodwin CR, De la Garza-Ramos R, et al. Predicting short-term outcome after surgery for primary spinal tumors based on patient frailty. World Neurosurg. 2017;108:393–8. https://doi.org/10.1016/j.wneu.2017.09.034.

    Article  PubMed  Google Scholar 

  40. Shin JI, Kothari P, Phan K, et al. Frailty index as a predictor of adverse postoperative outcomes in patients undergoing cervical spinal fusion. Spine. 2017;42(5):304–10. https://doi.org/10.1097/BRS.0000000000001755.

    Article  PubMed  Google Scholar 

  41. HCUP National Inpatient Sample (NIS). Healthcare Cost and Utilization Project (HCUP). Published online 2019. 2016. www.hcup-us.ahrq.gov/nisoverview.jsp

  42. Rofes L, Arreola V, Romea M, et al. Pathophysiology of oropharyngeal dysphagia in the frail elderly. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc. 2010;22(8):851-e230. https://doi.org/10.1111/j.1365-2982.2010.01521.x.

    Article  CAS  Google Scholar 

  43. Qureshi SA, Koehler SM, Lu Y, Cho S, Hecht AC. Utilization trends of cervical artificial disc replacement during the FDA investigational device exemption clinical trials compared to anterior cervical fusion. J Clin Neurosci Off J Neurosurg Soc Australas. 2013;20(12):1723–6. https://doi.org/10.1016/j.jocn.2013.03.002.

    Article  Google Scholar 

  44. Nandyala SV, Marquez-Lara A, Fineberg SJ, Singh K. Comparison between cervical total disc replacement and anterior cervical discectomy and fusion of 1 to 2 levels from 2002 to 2009. Spine. 2014;39(1):53–7. https://doi.org/10.1097/BRS.0000000000000044.

    Article  PubMed  Google Scholar 

  45. Pierce KE, Naessig S, Kummer N, et al. The five-item modified frailty index is predictive of 30-day postoperative complications in patients undergoing spine surgery. Spine. 2021;46(14):939–43. https://doi.org/10.1097/BRS.0000000000003936.

    Article  PubMed  Google Scholar 

  46. Yagi M, Michikawa T, Hosogane N, et al. The 5-item modified frailty index is predictive of severe adverse events in patients undergoing surgery for adult spinal deformity. Spine. 2019;44(18):E1083–91. https://doi.org/10.1097/BRS.0000000000003063.

    Article  PubMed  Google Scholar 

  47. Zreik J, Alvi MA, Yolcu YU, Sebastian AS, Freedman BA, Bydon M. Utility of the 5-item modified frailty index for predicting adverse outcomes following elective anterior cervical discectomy and fusion. World Neurosurg. 2021;146:e670–7. https://doi.org/10.1016/j.wneu.2020.10.154.

    Article  PubMed  Google Scholar 

  48. Huang CT, Lin WC, Ho CH, et al. Incidence of severe dysphagia after brain surgery in pediatric traumatic brain injury: a nationwide population-based retrospective study. J Head Trauma Rehabil. 2014;29(6):E31-36. https://doi.org/10.1097/HTR.0000000000000032.

    Article  PubMed  Google Scholar 

  49. Tian H, Abouzaid S, Sabbagh MN, et al. Health care utilization and costs among patients with AD with and without dysphagia. Alzheimer Dis Assoc Disord. 2013;27(2):138–44. https://doi.org/10.1097/WAD.0b013e318258cd7d.

    Article  PubMed  Google Scholar 

  50. Ritzwoller DP, Glasgow RE, Sukhanova AY, et al. Economic analyses of the be fit be well program: a weight loss program for community health centers. J Gen Intern Med. 2013;28(12):1581–8. https://doi.org/10.1007/s11606-013-2492-3.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Killien EY, Mills B, Errett NA, et al. Prediction of pediatric critical care resource utilization for disaster triage. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc. 2020;21(8):e491–501. https://doi.org/10.1097/PCC.0000000000002425.

    Article  Google Scholar 

  52. Berger JS, Haskell L, Ting W, et al. Evaluation of machine learning methodology for the prediction of healthcare resource utilization and healthcare costs in patients with critical limb ischemia-is preventive and personalized approach on the horizon? EPMA J. 2020;11(1):53–64. https://doi.org/10.1007/s13167-019-00196-9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Garfinkle R, Abou-Khalil M, Salama E, et al. Development and validation of a clinical risk score for intensive care resource utilization after colon cancer surgery: a practical guide to the selection of patients during COVID-19. J Gastrointest Surg Off J Soc Surg Aliment Tract. 2021;25(1):252–9. https://doi.org/10.1007/s11605-020-04665-9.

    Article  Google Scholar 

  54. Aubert CE, Schnipper JL, Roumet M, et al. Best definitions of multimorbidity to identify patients with high health care resource utilization. Mayo Clin Proc Innov Qual Outcomes. 2020;4(1):40–9. https://doi.org/10.1016/j.mayocpiqo.2019.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Siebenhüner K, Blaser J, Nowak A, et al. Comorbidities associated with worse outcomes among inpatients admitted for acute gastrointestinal bleeding. Dig Dis Sci. 2021. https://doi.org/10.1007/s10620-021-07197-7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tracy BM, Carlin MN, Tyson JW, Schenker ML, Gelbard RB. The 11-item modified frailty index as a tool to predict unplanned events in traumatic brain injury. Am Surg. 2020;86(11):1596–601. https://doi.org/10.1177/0003134820942196.

    Article  PubMed  Google Scholar 

  57. Pulik Ł, Jaśkiewicz K, Sarzyńska S, Małdyk P, Łęgosz P. Modified frailty index as a predictor of the long-term functional result in patients undergoing primary total hip arthroplasty. Reumatologia. 2020;58(4):213–20. https://doi.org/10.5114/reum.2020.98433.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Traven SA, Reeves RA, Althoff AD, Slone HS, Walton ZJ. New five-factor modified frailty index predicts morbidity and mortality in geriatric hip fractures. J Orthop Trauma. 2019;33(7):319–23. https://doi.org/10.1097/BOT.0000000000001455.

    Article  PubMed  Google Scholar 

  59. Araújo-Andrade L, Rocha-Neves JP, Duarte-Gamas L, et al. Prognostic effect of the new 5-factor modified frailty index in patients undergoing carotid endarterectomy with regional anesthesia - a prospective cohort study. Int J Surg Lond Engl. 2020;80:27–34. https://doi.org/10.1016/j.ijsu.2020.05.074.

    Article  Google Scholar 

  60. Aceto P, Bassi P, Sollazzi L, et al. Implementation of frailty preoperative assessment to predict outcome in patients undergoing urological surgery: a systematic review and meta-analysis. BJU Int. 2021;127(5):507–17. https://doi.org/10.1111/bju.15314.

    Article  PubMed  Google Scholar 

  61. Jung JM, Chung CK, Kim CH, Yang SH, Ko YS. The modified 11-item frailty index and postoperative outcomes in patients undergoing lateral lumbar interbody fusion. Spine. 2022;47(5):396–404. https://doi.org/10.1097/BRS.0000000000004260.

    Article  PubMed  Google Scholar 

  62. Nunley PD, Jawahar A, Kerr EJ, Cavanaugh DA, Howard C, Brandao SM. Choice of plate may affect outcomes for single versus multilevel ACDF: results of a prospective randomized single-blind trial. Spine J Off J North Am Spine Soc. 2009;9(2):121–7. https://doi.org/10.1016/j.spinee.2007.11.009.

    Article  Google Scholar 

  63. Danto J, DiCapua J, Nardi D, et al. Multiple cervical levels: increased risk of dysphagia and dysphonia during anterior cervical discectomy. J Neurosurg Anesthesiol. 2012;24(4):350–5. https://doi.org/10.1097/ANA.0b013e3182622843.

    Article  PubMed  Google Scholar 

  64. Grant DG, Bradley PT, Pothier DD, et al. Complications following gastrostomy tube insertion in patients with head and neck cancer: a prospective multi-institution study, systematic review and meta-analysis. Clin Otolaryngol Off J ENT-UK Off J Neth Soc Oto-Rhino-Laryngol Cervico-Facial Surg. 2009;34(2):103–12. https://doi.org/10.1111/j.1749-4486.2009.01889.x.

    Article  CAS  Google Scholar 

  65. Mays AC, Worley M, Ackall F, D’Agostino R, Waltonen JD. The association between gastrostomy tube placement, poor post-operative outcomes, and hospital re-admissions in head and neck cancer patients. Surg Oncol. 2015;24(3):248–57. https://doi.org/10.1016/j.suronc.2015.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rahnemai-Azar AA, Rahnemaiazar AA, Naghshizadian R, Kurtz A, Farkas DT. Percutaneous endoscopic gastrostomy: indications, technique, complications and management. World J Gastroenterol. 2014;20(24):7739–51. https://doi.org/10.3748/wjg.v20.i24.7739.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kirshblum S, Johnston MV, Brown J, O’Connor KC, Jarosz P. Predictors of dysphagia after spinal cord injury. Arch Phys Med Rehabil. 1999;80(9):1101–5. https://doi.org/10.1016/s0003-9993(99)90068-0.

    Article  CAS  PubMed  Google Scholar 

  68. Li YD, Chi JE, Chiu PY, Kao FC, Lai PL, Tsai TT. The comparison between anterior and posterior approaches for removal of infected lumbar interbody cages and a proposal regarding the use of endoscope-assisted technique. J Orthop Surg. 2021;16(1):386. https://doi.org/10.1186/s13018-021-02535-x.

    Article  Google Scholar 

  69. Seng C, Tow BPB, Siddiqui MA, et al. Surgically treated cervical myelopathy: a functional outcome comparison study between multilevel anterior cervical decompression fusion with instrumentation and posterior laminoplasty. Spine J Off J North Am Spine Soc. 2013;13(7):723–31. https://doi.org/10.1016/j.spinee.2013.02.038.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian A. Bowers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naftchi, A.F., Vellek, J., Stack, J. et al. Frailty as a Superior Predictor of Dysphagia and Surgically Placed Feeding Tube Requirement After Anterior Cervical Discectomy and Fusion Relative to Age. Dysphagia 38, 837–846 (2023). https://doi.org/10.1007/s00455-022-10505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10505-6

Keywords

Navigation