Skip to main content
Log in

Geodesic Geometry on Graphs

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We investigate a graph theoretic analog of geodesic geometry. In a graph \(G=(V,E)\) we consider a system of paths \(\mathcal {P}=\{P_{u,v}:u,v\in V\}\) where \(P_{u,v}\) connects vertices u and v. This system is consistent in that if vertices yz are in \(P_{u,v}\), then the subpath of \(P_{u,v}\) between them coincides with \(P_{y,z}\). A map \(w:E\rightarrow (0,\infty )\) is said to induce \(\mathcal {P}\) if for every \(u, v\in V\) the path \(P_{u,v}\) is w-geodesic. We say that G is metrizable if every consistent path system is induced by some such w. As we show, metrizable graphs are very rare, whereas there exist infinitely many 2-connected metrizable graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. In his terminology strongly metrizable.

  2. https://github.com/dcizma1/testing-graph-metrizability.

References

  1. Blokhuis, A., Brouwer, A.E.: Geodetic graphs of diameter two. Geom. Dedic. 25(1–3), 527–533 (1988)

    MathSciNet  MATH  Google Scholar 

  2. Bodwin, G.: On the structure of unique shortest paths in graphs. In: 13th Annual ACM-SIAM Symposium on Discrete Algorithms (San Diego 2019), pp. 2071–2089. SIAM, Philadelphia (2019)

  3. Bosák, J., Kotzig, A., Znám, Š.: Strongly geodetic graphs. J. Combin. Theory 5(2), 170–176 (1968)

  4. Bridgland, M.F.: Geodetic Graphs and Convexity. PhD thesis, Louisiana State University and Agricultural & Mechanical College (1983). https://digitalcommons.lsu.edu/gradschool_disstheses/3917/

  5. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincaré Sect. B 3(4), 433–438 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Dawes, R.W.: Minimally \(3\)-connected graphs. J. Combin. Theory Ser. B 40(2), 159–168 (1986)

    Article  MathSciNet  Google Scholar 

  7. Dekel, Y., Lee, J.R., Linial, N.: Eigenvectors of random graphs: nodal domains. Random Struct. Algorithms 39(1), 39–58 (2011)

    Article  MathSciNet  Google Scholar 

  8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (2018)

    Google Scholar 

  9. Dirac, G.A.: A property of \(4\)-chromatic graphs and some remarks on critical graphs. J. Lond. Math. Soc. 27(1), 85–92 (1952)

    Article  MathSciNet  Google Scholar 

  10. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics: Study and Research Texts, vol. 2. Springer, Berlin (1988)

    Book  Google Scholar 

  11. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 2, 326–336 (1952)

    Article  MathSciNet  Google Scholar 

  12. Hoory, Sh., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)

    Article  MathSciNet  Google Scholar 

  13. Liu, Ch.-H., Thomas, R.: Robertson’s conjecture I. Well-quasi-ordering bounded tree-width graphs by the topological minor relation (2020). arXiv:2006.00192

  14. Lovász, L.: Graphs and Geometry. American Mathematical Society Colloquium Publications, vol. 65. American Mathematical Society, Providence (2019)

    Google Scholar 

  15. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ore, O.: Theory of Graphs. American Mathematical Society Colloquium Publications, vol. 38. American Mathematical Society, Providence (1962)

    Google Scholar 

  17. Parthasarathy, K.R., Srinivasan, N.: Geodetic blocks of diameter three. Combinatorica 4(2–3), 197–206 (1984)

    Article  MathSciNet  Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Combin. Theory Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cizma.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by BSF US-Israel Grant 2018313 "Between Topology and Combinatorics"

Appendix A: Certificates of Non-Metrizability

Appendix A: Certificates of Non-Metrizability

For each graph G in Fig. 22 we give a path system in G along with a system of inequalities a weight function inducing this path system must satisfy. In each case, these inequalities imply at least one edge in the graph must have a non-positive weight, showing the graph in not metrizable.

figure a
figure b
figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cizma, D., Linial, N. Geodesic Geometry on Graphs. Discrete Comput Geom 68, 298–347 (2022). https://doi.org/10.1007/s00454-021-00345-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00345-w

Keywords

Mathematics Subject Classification

Navigation