Skip to main content
Log in

Extending the computational and experimental analysis of lipase active site selectivity

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Molecular docking is an important computational analysis widely used to predict the interaction of enzymes with several starting materials for developing new valuable products from several starting materials, including oils and fats. In the present study, molecular docking was used as an efficient in silico screening tool to select biocatalysts with the highest catalytic performance in butyl esters production in a solvent-free system, an eco-friendly approach, via direct esterification of free fatty acids from Licuri oil with butanol. For such purpose, three commercial lipase preparations were used to perform molecular docking studies such as Burkholderia cepacia (BCL), Porcine pancreatic (PPL), and Candida rugosa (CRL). Concurrently, the results obtained in BCL and CRL are the most efficient in the esterification process due to their higher preference for catalyzing the esterification of lauric acid, the main fatty acid found in the licuri oil composition. Meanwhile, PPL was the least efficient because it preferentially interacts with minor fatty acids. Molecular docking with the experimental results indicated the better performance in the synthesis of esters was BCL. In conclusion, experimental results analysis shows higher enzymatic productivity in esterification reactions of 1294.83 μmol/h.mg, while the CRL and PPL demonstrated the lowest performance (189.87 μmol / h.mg and 23.96 μmol / h.mg, respectively). Thus, molecular docking and experimental results indicate that BCL is a more efficient lipase to produce fatty acids and esters from licuri oil with a high content of lauric acid. In addition, this study also demonstrates the application of molecular docking as an important tool for lipase screening to achieve more sustainable production of butyl esters with a view synthesis of biolubricants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lisboa MC, Wiltshire FMS, Fricks AT et al (2020) Oleochemistry potential from Brazil’s northeastern exotic plants. Biochimie 178:96–104

    Article  CAS  PubMed  Google Scholar 

  2. Bauer LC, Damásio JM, do A, da Silva MV, et al (2013) Chemical characterization of pressed and refined licuri (Syagrus coronata) oils. Acta Sci - Technol 35:771–776. https://doi.org/10.4025/actascitechnol.v35i4.20251

    Article  CAS  Google Scholar 

  3. Crepaldi IC, Almeida-MuradianRios LBDMDG et al (2001) Composição nutricional do fruto de licuri (Syagrus coronata (Martius) Beccari). Rev Bras Botânica 24:155–159. https://doi.org/10.1590/s0100-84042001000200004

    Article  CAS  Google Scholar 

  4. de La SKTS, Meneghetti SMP, Ferreira de La Salles W et al (2010) Characterization of Syagrus coronata (Mart.) Becc. oil and properties of methyl esters for use as biodiesel. Ind Crops Prod 32:518–521. https://doi.org/10.1016/j.indcrop.2010.06.026

    Article  CAS  Google Scholar 

  5. Iha OK, Alves FCSC, Suarez PAZ et al (2014) Physicochemical properties of Syagrus coronata and Acrocomia aculeata oils for biofuel production. Ind Crops Prod 62:318–322. https://doi.org/10.1016/j.indcrop.2014.09.003

    Article  CAS  Google Scholar 

  6. Feeney OM, Crum MF, McEvoy CL et al (2016) 50 years of oral lipid-based formulations: Provenance, progress and future perspectives. Adv Drug Deliv Rev 101:167–194. https://doi.org/10.1016/J.ADDR.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  7. de Albuquerque UP, de Medeiros PM, de Almeida ALS et al (2007) Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol 114:325–354. https://doi.org/10.1016/j.jep.2007.08.017

    Article  PubMed  Google Scholar 

  8. Leal LB, Sousa GD, Seixas KB et al (2013) Determination of the critical hydrophile-lipophile balance of licuri oil from Syagrus coronata: Application for topical emulsions and evaluation of its hydrating function. Brazilian J Pharm Sci 49:167–173. https://doi.org/10.1590/S1984-82502013000100018

    Article  CAS  Google Scholar 

  9. Pereira RAG, Oliveira CJB, Medeiros AN et al (2010) Physicochemical and sensory characteristics of milk from goats supplemented with castor or licuri oil. J Dairy Sci 93:456–462. https://doi.org/10.3168/jds.2009-2315

    Article  CAS  PubMed  Google Scholar 

  10. Aguieiras ECG, Papadaki A, Mallouchos A et al (2019) Enzymatic synthesis of bio-based wax esters from palm and soybean fatty acids using crude lipases produced on agricultural residues. Ind Crops Prod 139:111499. https://doi.org/10.1016/J.INDCROP.2019.111499

    Article  CAS  Google Scholar 

  11. Guimarães JR, Miranda LP, Fernandez-Lafuente R, Tardioli PW (2021) Immobilization of Eversa® Transform via CLEA technology converts it in a suitable biocatalyst for biolubricant production using waste cooking oil. Molecules 26:193. https://doi.org/10.3390/MOLECULES26010193

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bolina ICA, Gomes RAB, Mendes AA (2021) biolubricant production from several oleaginous feedstocks using lipases as catalysts: current scenario and future perspectives. BioEnergy Res 2021:1–19. https://doi.org/10.1007/S12155-020-10242-4

    Article  Google Scholar 

  13. Fernandes KV, Cavalcanti EDC, Cipolatti EP et al (2021) Enzymatic synthesis of biolubricants from by-product of soybean oil processing catalyzed by different biocatalysts of Candida rugosa lipase. Catal Today 362:122–129. https://doi.org/10.1016/J.CATTOD.2020.03.060

    Article  CAS  Google Scholar 

  14. Kamal MZ, Barrow CJ, Rao NM (2015) A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols. Food Chem 173:1030–1036. https://doi.org/10.1016/j.foodchem.2014.10.124

    Article  CAS  PubMed  Google Scholar 

  15. Cantone S, Ferrario V, Corici L et al (2013) Efficient immobilisation of industrial biocatalysts: Criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev. https://doi.org/10.1039/c3cs35464d

    Article  PubMed  Google Scholar 

  16. Sarmah N, Revathi D, Sheelu G, et al (2018) Recent advances on sources and industrial applications of lipases. Biotechnol. Prog.

  17. Gandhi NN (1997) Applications of lipase, department of chemical engineering, faculty of engineering, University of Waterloo, Waterloo ON N2L 3G1, Canada. J Am Oil Chem Soc 74:621–634

    Article  CAS  Google Scholar 

  18. Sarmah N, Revathi D, Sheelu G et al (2017) Recent advances on sources and industrial applications of lipases. Am Inst Chem Eng Biotechnol Prog 34:5–28. https://doi.org/10.1002/btpr.2581

    Article  CAS  Google Scholar 

  19. Melani NB, Tambourgi EB, Silveira E (2020) lipases: from production to applications. Sep. Purif. Rev.

  20. Lerin LA, Loss RA, Remonatto D et al (2014) A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-014-1222-5

    Article  PubMed  Google Scholar 

  21. Arana-Peña S, Carballares D, Berenguer-Murcia Á et al (2020) One pot use of combilipases for full modification of oils and fats: Multifunctional and heterogeneous substrates. Catalysts 10(6):605

    Article  Google Scholar 

  22. Ramani K, Saranya P, Jain SC, Sekaran G (2013) Lipase from marine strain using cooked sunflower oil waste: Production optimization and application for hydrolysis and thermodynamic studies. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-012-0785-2

    Article  PubMed  Google Scholar 

  23. Barbosa MS, Freire CCC, Almeida LC et al (2019) Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity. Biotechnol Appl Biochem 66:823–832. https://doi.org/10.1002/bab.1793

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Cheong LZ, Zhao J et al (2019) Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: Modeling the binding affinity of lipases and fatty acids. Int J Biol Macromol 123:261–268. https://doi.org/10.1016/j.ijbiomac.2018.11.049

    Article  CAS  PubMed  Google Scholar 

  25. Bisht M, Mondal D, Pereira MM et al (2017) Long-term protein packaging in cholinium-based ionic liquids: Improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chem. https://doi.org/10.1039/c7gc02011b

    Article  PubMed  PubMed Central  Google Scholar 

  26. Islam MT, Biswas S, Bagchi R et al (2019) Ponicidin as a promising anticancer agent: Its biological and biopharmaceutical profile along with a molecular docking study. Biotechnol Appl Biochem 66:434–444

    Article  CAS  PubMed  Google Scholar 

  27. Hanke AT, Klijn ME, Verhaert PDEM et al (2016) Prediction of protein retention times in hydrophobic interaction chromatography by robust statistical characterization of their atomic-level surface properties. Biotechnol Prog. https://doi.org/10.1002/btpr.2219

    Article  PubMed  Google Scholar 

  28. Van der Borght J, Soetaert W, Desmet T (2012) Engineering the acceptor specificity of trehalose phosphorylase for the production of trehalose analogs. Biotechnol Prog 28:1257–1262. https://doi.org/10.1002/btpr.1609

    Article  CAS  PubMed  Google Scholar 

  29. Weiser D, Sóti PL, Bánóczi G et al (2016) Bioimprinted lipases in PVA nanofibers as efficient immobilized biocatalysts. Tetrahedron 72:7335–7342. https://doi.org/10.1016/j.tet.2016.06.027

    Article  CAS  Google Scholar 

  30. Almeida LC, Barbosa MS, de Jesus FA et al (2020) Enzymatic transesterification of coconut oil by using immobilized lipase on biochar: An experimental and molecular docking study. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.1992

    Article  PubMed  Google Scholar 

  31. Mota DA, Barbosa MS, Schneider JK et al (2021) Potential use of crude coffee silverskin oil in integrated bioprocess for fatty acids production. J Americ Oil Chem Soc. https://doi.org/10.1002/aocs.12472

    Article  Google Scholar 

  32. Brandão LM, d. S, Barbosa MS, Souza RL, et al (2020) Lipase activation by molecular bioimprinting: The role of interactions between fatty acids and enzyme active site. Biotechnol Prog. https://doi.org/10.1002/btpr.3064

    Article  PubMed  Google Scholar 

  33. Rodrigues CA, Barbosa MS, dos Santos JCB et al (2021) Computational and experimental analysis on the preferential selectivity of lipases for triglycerides in Licuri oil. Bioprocess Biosyst Eng 1:3. https://doi.org/10.1007/s00449-021-02590-y

    Article  CAS  Google Scholar 

  34. Rodrigues Sousa R, Sant A, Silva A et al (2021) Catalysis Science & Technology MINI REVIEW Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Cite this Catal Sci Technol 11:5696. https://doi.org/10.1039/d1cy00696g

    Article  CAS  Google Scholar 

  35. Bouaid A, Acherki H, García A et al (2017) Enzymatic butanolysis of coconut oil. Biorefinery approach Fuel 209:141–149. https://doi.org/10.1016/j.fuel.2017.07.040

    Article  CAS  Google Scholar 

  36. Choi H, Han J, Lee J (2021) Renewable butanol production via catalytic routes. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph182211749

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK (2016) A review of the enzymatic hydroesterification process for biodiesel production. Renew Sustain Energy Rev 61:245–257. https://doi.org/10.1016/J.RSER.2016.03.048

    Article  CAS  Google Scholar 

  38. Casas-Godoy L, Gasteazoro F, Duquesne S et al (2018) Lipases: An overview. In: Sandoval G (ed) Methods in Molecular Biology. Springer, New York, NY, pp 3–38

    Google Scholar 

  39. Lopes DB, Duarte MCT (2011) Macedo GA (2011) Biosynthesis of oleyl oleate wax ester by non-commercial lipase. Food Sci Biotechnol 205(20):1203–1209. https://doi.org/10.1007/S10068-011-0166-7

    Article  Google Scholar 

  40. da Silva ARC, Calazans Soares LR, Lima ÁS et al (2022) Strategies to reuse of biocatalysts in the hydrolysis and esterification reactions from licuri (Syagrus coronata (Mart.) Becc.) oil. ChemCatChem. https://doi.org/10.1002/CCTC.202200448

    Article  Google Scholar 

  41. Carvalho WCA, Luiz JHH, Fernandez-Lafuente R et al (2021) Eco-friendly production of trimethylolpropane triesters from refined and used soybean cooking oils using an immobilized low-cost lipase (Eversa>® Transform 2.0) as heterogeneous catalyst. Biomass Bioenerg 155:106302. https://doi.org/10.1016/J.BIOMBIOE.2021.106302

    Article  CAS  Google Scholar 

  42. Guedes Júnior JGE, Mattos FR, Sabi GJ et al (2022) Design of a sustainable process for enzymatic production of ethylene glycol diesters via hydroesterification of used soybean cooking oil. J Environ Chem Eng 10:107062. https://doi.org/10.1016/J.JECE.2021.107062

    Article  Google Scholar 

  43. Bhutada PR, Jadhav AJ, Pinjari DV et al (2016) Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Ind Crops Prod 82:74–80. https://doi.org/10.1016/j.indcrop.2015.12.004

    Article  CAS  Google Scholar 

  44. Barbosa MS, Freire CCC, Brandão LMS et al (2021) Biolubricant production under zero-waste Moringa oleifera Lam biorefinery approach for boosting circular economy. Ind Crops Prod 167:113542. https://doi.org/10.1016/j.indcrop.2021.113542

    Article  CAS  Google Scholar 

  45. Martínez-Rosell G, Giorgino T, De Fabritiis G (2017) Playmolecule proteinprepare: a web application for protein preparation for molecular dynamics simulations. J Chem Inf Model 57:1511–1516. https://doi.org/10.1021/ACS.JCIM.7B00190/ASSET/IMAGES/LARGE/CI-2017-00190T_0004.JPEG

    Article  PubMed  Google Scholar 

  46. Morris GM, Ruth H, Lindstrom W et al (2009) Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. https://doi.org/10.1002/jcc.21256

    Article  PubMed  PubMed Central  Google Scholar 

  47. Trott O, Olson AJ (2010) Software news and update autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miranda JS, Silva NCA, Bassi JJ et al (2014) Immobilization of Thermomyces lanuginosus lipase on mesoporous poly-hydroxybutyrate particles and application in alkyl esters synthesis: Isotherm, thermodynamic and mass transfer studies. Chem Eng J 251:392–403. https://doi.org/10.1016/J.CEJ.2014.04.087

    Article  CAS  Google Scholar 

  49. Lage FAP, Bassi JJ, Corradini MCC et al (2016) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microb Technol 84:56–67. https://doi.org/10.1016/j.enzmictec.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  50. Alves MD, Aracri FM, Cren ÉC, Mendes AA (2017) Isotherm, kinetic, mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin. Chem Eng J 311:1–12. https://doi.org/10.1016/j.cej.2016.11.069

    Article  CAS  Google Scholar 

  51. de Sousa RR, da Silva AS, Fernandez-Lafuente R, Ferreira-Leitão VS (2021) Simplified method to optimize enzymatic esters syntheses in solvent-free systems: validation using literature and experimental data. Catalysts. https://doi.org/10.3390/catal11111357

    Article  Google Scholar 

  52. Sánchez DA, Tonetto GM, Ferreira ML (2018) Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions. Biotechnol. Bioeng.

  53. Khan M, Kumar A (2016) Computational modelling and protein-ligand interaction studies of SMlipA lipase cloned from forest metagenome. J Mol Graph Model. https://doi.org/10.1016/j.jmgm.2016.10.010

    Article  PubMed  Google Scholar 

  54. L. Eremeev N, Y. Zaitsev S, (2016) porcine pancreatic lipase as a catalyst in organic synthesis. Mini Rev Org Chem 13:78–85. https://doi.org/10.2174/1570193x13666160225000520

    Article  CAS  Google Scholar 

  55. Petit T, Puskar L (2018) FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam Relat Mater 89:52–66. https://doi.org/10.1016/j.diamond.2018.08.005

    Article  ADS  CAS  Google Scholar 

  56. Chen Y, Zou C, Mastalerz M et al (2015) Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review. Int J Mol Sci 16:30223–30250. https://doi.org/10.3390/ijms161226227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rohman A, Man YBC (2010) Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res Int 43:886–892. https://doi.org/10.1016/j.foodres.2009.12.006

    Article  CAS  Google Scholar 

  58. Chowdhury A, Mitra D, Biswas D (2013) Biolubricant synthesis from waste cooking oil via enzymatic hydrolysis followed by chemical esterification. J Chem Technol Biotechnol 88:139–144. https://doi.org/10.1002/jctb.3874

    Article  CAS  Google Scholar 

  59. Chowdhury A, Chakraborty R, Mitra D, Biswas D (2014) Optimization of the production parameters of octyl ester biolubricant using Taguchi’s design method and physico-chemical characterization of the product. Ind Crops Prod 52:783–789. https://doi.org/10.1016/J.INDCROP.2013.11.007

    Article  CAS  Google Scholar 

  60. Cruz M, Almeida MF, da Alvim-Ferraz MC, Dias JM (2019) Monitoring enzymatic hydroesterification of low-cost feedstocks by fourier transform infrared spectroscopy. Catalysts. https://doi.org/10.3390/CATAL9060535

    Article  Google Scholar 

  61. de Carvalho GC, de Moura MFV, de Castro HGC et al (2020) Influence of the atmosphere on the decomposition of vegetable oils: study of the profiles of FTIR spectra and evolution of gaseous products. J Therm Anal Calorim 140:2247–2258. https://doi.org/10.1007/s10973-019-08960-9

    Article  CAS  Google Scholar 

  62. Hafizah AN, Salmon J (2010) Synthesis and characterization of ester trimethylolpropane based jatropha curcas oil as. J Sci Technol 2:47–58

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [CAPES]—Finance Code 001; Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq]; Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe [FAPITEC/SE], and CIEPQPF is supported by the FCT through the projects UIDB/EQU/00102/2020 and UIDP/EQU/00102/2020.

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq]; Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe [FAPITEC/SE], and CIEPQPF is supported by the FCT through the projects UIDB/EQU/00102/2020 and UIDP/EQU/00102/2020. The research received financial support from the research fund provided by the Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe. This foundation is pivotal in supporting and promoting research and technological innovation activities within Sergipe, Brazil.

Author information

Authors and Affiliations

Authors

Contributions

All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Cleide M. F. Soares.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C.A., Santos, J.C.B., Barbosa, M.S. et al. Extending the computational and experimental analysis of lipase active site selectivity. Bioprocess Biosyst Eng 47, 313–323 (2024). https://doi.org/10.1007/s00449-023-02956-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02956-4

Keywords

Navigation