Skip to main content
Log in

Antibacterial activity of green gold and silver nanoparticles using ginger root extract

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Recent studies demonstrated that the speed of synthesis, biocompatibility, and antimicrobial activity of gold (Au) and silver (Ag) metals is enhanced when biosynthesized in nano-sized particles. In the present study, Au- and Ag-based nanoparticles (NPs) were synthesized via a biological process using aqueous Ginger root extract and characterized by various spectroscopic methods. The NPs have hexagonal and spherical shapes. The average particle size for Au and Ag NPs was 20 and 15 nm, respectively. The dynamic light scattering (DLS) technique has shown that the zeta potential values of synthesized NPs were 4.8 and − 7.11 mv, respectively. Gas chromatography–mass spectrometry (GC–MS) analysis of Ginger root extract revealed 25 compounds. The synthesized NPs showed significant activity against Staphylococcus aureus and Escherichia (E). coli in vitro, with IC50 and IC90 values for Au and Ag NPs, respectively, noted to be 7.5 and 7.3 µg/ml and 15 and 15.2 µg/ml for both bacterial strains. The protein leakage level was tremendous and morphological changes occurred in bacteria treated with biosynthesized NPs. These results suggest that the biosynthesized metallic NPs have the suitable potential for application as antibacterial agents with enhanced activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The corresponding authors' data supporting this study's findings are available upon reasonable request.

Abbreviations

FTIR:

Fourier-transform infrared spectroscopy

MIC:

Minimum inhibitory concentration

NPs:

Nanoparticles

ROS:

Reactive oxygen species

TEM:

Transmission electron microscopy

References

  1. Saravanan M, Barabadi H, Vahidi H (2021) Green nanotechnology: isolation of bioactive molecules and modified approach of biosynthesis. Biogenic Nanoparticles Cancer Theranostics Elsevier. https://doi.org/10.1016/B978-0-12-821467-1.00005-7

    Article  Google Scholar 

  2. Barabadi H, Vahidi H, Damavandi Kamali K, Rashedi M, Saravanan M (2020) Antineoplastic biogenic silver nanomaterials to combat cervical cancer: a novel approach in cancer therapeutics. J Cluster Sci 31:659–672

    Article  CAS  Google Scholar 

  3. Cruz DM, Mostafavi E, Vernet-Crua A, Barabadi H, Shah V, Cholula-Díaz JL, Guisbiers G, Webster TJ (2020) Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. J Phy Mater 3:034005

    Article  CAS  Google Scholar 

  4. Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M (2021) Green silver and gold nanoparticles: biological synthesis approaches and potentials for biomedical applications. Mole 26:844

    Article  Google Scholar 

  5. Wu X, Lu Y, Zhou S, Chen L, Xu B (2016) Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int 86:14–23

    Article  PubMed  Google Scholar 

  6. Belete TM (2019) Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Human Microbiome Journal 11:100052

    Article  Google Scholar 

  7. Sorbiun M, Shayegan Mehr E, Ramazani A, Mashhadi Malekzadeh A (2018) Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties. Nanochem Res 3:1–16

    CAS  Google Scholar 

  8. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    Article  CAS  PubMed  Google Scholar 

  9. Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB (2020) The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 10:1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chitsazi MR, Korbekandi H, Asghari G, Bahri Najafi R, Badii A, Iravani S (2016) Synthesis of silver nanoparticles using methanol and dichloromethane extracts of Pulicaria gnaphalodes (Vent.) Boiss. aerial parts. Arti Cell Nanomed Biotechnol 44:328–333

    Article  CAS  Google Scholar 

  11. Malu S, Obochi G, Tawo E, Nyong B (2009) Antibacterial activity and medicinal properties of ginger (Zingiber officinale). Glob J Pure Appl Sci. https://doi.org/10.4314/gjpas.v15i3-4.48561

    Article  Google Scholar 

  12. El-Nour KMA, Aa E, Al-Warthan A, Ammar RA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140

    Article  Google Scholar 

  13. Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  CAS  PubMed  Google Scholar 

  14. Rejiniemon TS, Arasu MV, Duraipandiyan V, Ponmurugan K, Al-Dhabi NA, Arokiyaraj S, Agastian P, Choi KC (2014) In-vitro antimicrobial, antibiofilm, cytotoxic, antifeedant and larvicidal properties of novel quinone isolated from Aegle marmelos (Linn) Correa. Annl Clin Microbiol Antimicrobials. https://doi.org/10.1186/s12941-014-0048-y

    Article  Google Scholar 

  15. Horie M, Fujita K (2011) Toxicity of metal oxides nanoparticles. Advan Mole Toxicol Elsevier. https://doi.org/10.1016/B978-0-444-53864-2.00004-9

    Article  Google Scholar 

  16. Malu S, Obochi G, Tawo E, Nyong B (2009) Antibacterial activity and medicinal properties of ginger (Zingiber officinale). Global J Pure Appl Sci 15:365–368

    Google Scholar 

  17. Kumar KP, Paul W, Sharma CP (2011) Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem 46:2007–2013

    Article  CAS  Google Scholar 

  18. Sathishkumar M, Sneha K, Won S, Cho C-W, Kim S, Yun Y-S (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf, B 73:332–338

    Article  CAS  Google Scholar 

  19. Velmurugan P, Anbalagan K, Manosathyadevan M, Lee K-J, Cho M, Lee S-M, Park J-H, Oh S-G, Bang K-S, Oh B-T (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng 37:1935–1943

    Article  CAS  PubMed  Google Scholar 

  20. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  21. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  22. Marchev AS, Yordanova ZP, Georgiev MI (2020) Green (cell) factories for advanced production of plant secondary metabolites. Crit Rev Biotechnol 40:443–458

    Article  CAS  PubMed  Google Scholar 

  23. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol Intern Res Process Environ Clean Technol 84:151–157

    CAS  Google Scholar 

  24. Saravanan M, Barabadi H, Vahidi H, Webster TJ, Medina-Cruz D, Mostafavi E, Vernet-Crua A, Cholula-Diaz JL, Periakaruppan P (2021) Emerging theranostic silver and gold nanobiomaterials for breast cancer: Present status and future prospects. Elsevier, Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications, pp 439–456

    Google Scholar 

  25. Barabadi H (2017) Nanobiotechnology: a promising scope of gold biotechnology. Cell Mol Biol (Noisy-le-grand) 63:3–4

    Article  PubMed  Google Scholar 

  26. Vahidi H, Kobarfard F, Alizadeh A, Saravanan M, Barabadi H (2021) Green nanotechnology-based tellurium nanoparticles: Exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium tellurite. Inorg Chem Commun 124:108385

    Article  CAS  Google Scholar 

  27. Mohammadlou M, Maghsoudi H, Jafarizadeh-Malmiri H (2016) A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Intern Food Res J. 23:446

    CAS  Google Scholar 

  28. Jacobson KH, Gunsolus IL, Kuech TR, Troiano JM, Melby ES, Lohse SE, Hu D, Chrisler WB, Murphy CJ, Orr G (2015) Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environ Sci Technol 49:10642–10650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elia P, Zach R, Hazan S, Kolusheva S, Ze P, Zeiri Y (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int J Nanomed 9:4007

    Google Scholar 

  30. Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta Part A Mol Biomol Spectrosc 102:15–23

    Article  CAS  Google Scholar 

  31. Khalil MM, Ismail EH, El-Magdoub F (2012) Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab J Chem 5:431–437

    Article  CAS  Google Scholar 

  32. Padalia H, Moteriya P, Chanda S (2015) Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem 8:732–741

    Article  CAS  Google Scholar 

  33. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R (2015) Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules 20:2693–2706

    Article  PubMed  PubMed Central  Google Scholar 

  34. Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138

    Article  CAS  Google Scholar 

  35. Bagherzade G, Tavakoli MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7:227–233

    Article  Google Scholar 

  36. Patil MP, Singh RD, Koli PB, Patil KT, Jagdale BS, Tipare AR, Kim G-D (2018) Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb Pathog 121:184–189

    Article  CAS  PubMed  Google Scholar 

  37. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Petty NK, Zakour NLB, Stanton-Cook M, Skippington E, Totsika M, Forde BM, Phan M-D, Moriel DG, Peters KM, Davies M (2014) Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci 111:5694–5699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Henie E, Zaiton H, Suhaila M (2009) Bacterial membrane disruption in food pathogens by Psidium guajava leaf extracts. Int Food Res J 16:297–311

    Google Scholar 

  41. Janaki AC, Sailatha E, Gunasekaran S (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 144:17–22

    Article  CAS  Google Scholar 

  42. Kim S-H, Lee H-S, Ryu D-S, Choi S-J, Lee D-S (2011) Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol 39:77–85

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the personnel of the Drug Applied Research Center for their help and guidance.

Funding

This work was financially supported by Tabriz University of Medical Sciences (Morteza Yadi M.Sc. Thesis NO: 96/2–3/16).

Author information

Authors and Affiliations

Authors

Contributions

MY: a significant contributor to doing and writing the manuscript. MA, HD-M, and MA: collaborated on the thesis that resulted in the paper. AA and MM: designed and supervised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hassan Dianat-Moghadam or Morteza Milani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in the publication.

Ethics approval

Not applicable.

Consent to participate

All authors consent to participate.

Consent for publication

All authors consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadi, M., Azizi, M., Dianat-Moghadam, H. et al. Antibacterial activity of green gold and silver nanoparticles using ginger root extract. Bioprocess Biosyst Eng 45, 1905–1917 (2022). https://doi.org/10.1007/s00449-022-02780-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02780-2

Keywords

Navigation