Skip to main content

Advertisement

Log in

Effect of cellulose crystallinity modification by starch gel treatment for improvement in ethanol fermentation rate by non-GM yeast cell factories

  • Rapid Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This paper studies the reduction of crystallinity degree (CD) of cellulose treated with starch gel (SG), and the correlation of CD with the fermentation efficiency of cellulose to fuel-grade ethanol. Cellulose bioconversion from wood sawdust, consisting of three processes, was conducted in the same batch (one-step). The XRD and TEM analysis revealed 11% reduction in cellulose CD after its treatment with SG. One-step bioconversion process was performed employing two cell factories (CF) of non-engineered S. cerevisiae. CFs contained non- engineered S. cerevisiae cells covered with either SG entrapping Trichoderma reesei or cellulases prepared in the laboratory and immobilized in SG. The consolidated fermentation of treated cellulose resulted in an increase of bioethanol concentration (60–90%) in 2-day fermentation and the maximum ethanol concentration reached was approximately 5 mL/L (3.95 g/L). The fermentation efficiency for grade-fuel ethanol production was improved by cellulose pretreatment using SG to achieve reduced CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Nigam P, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:2–68

    Article  Google Scholar 

  2. Nigam P (2017) An overview of microorganisms’ contribution and performance in alcohol fermentation processing a variety of substrates. Curr Biotechnol 6:9–16

    Article  CAS  Google Scholar 

  3. Nigam P (2017) An overview: recycling of solid barley waste generated as a by-product in distillery and brewery. Waste Manag 62:255–261

    Article  CAS  PubMed  Google Scholar 

  4. BoO A, Gao M, Wang Y, Wu C, Ma H, Wang Q (2019) Lignocellulosic biomass for bioethanol: an overview on pretreatment, hydrolysis and fermentation processes. Rev Environ Health 34:57–68

    Article  Google Scholar 

  5. Chamoli S, Yadav E, Hemansi SJK, Verma AK, Navani NK, Kumar P (2020) Magnetically recyclable catalytic nanoparticles grafted with Bacillus subtilis β-glucosidase for efficient cellobiose hydrolysis. Int J Biol Macromol 164:1729–1736

    Article  CAS  Google Scholar 

  6. Chen H, Wang L (2017) Microbial fermentation strategies for biomass conversion. Technol Biochem Convers Biomass 165–196

  7. Dahiya D, Nigam P (2018) Bioethanol synthesis for fuel or beverages from the processing of agri-food by-products and natural biomass using economical and purposely modified biocatalytic systems. AIMS Energy 6:979–992

    Article  CAS  Google Scholar 

  8. Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874

    Article  CAS  PubMed  Google Scholar 

  9. Xiros C, Topakas E, Christakopoulos P (2013) Hydrolysis and fermentation for cellulosic ethanol production. WENE 2:633–654

    Article  CAS  Google Scholar 

  10. Gong Y, Tang G, Wang M, Li J, Xiao W, Lin J, Liu Z (2014) Direct fermentation of amorphous cellulose to ethanol by engineered Saccharomyces cerevisiae coexpressing Trichoderma viride EG3 and BGL1. J Gen Appl Microbiol 60:198–206

    Article  CAS  PubMed  Google Scholar 

  11. Oh EJ, Jin YS (2020) Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res 20:foz089

    Article  CAS  PubMed  Google Scholar 

  12. Zhao W, Zhao F, Zhang S, Gong Q, Chen G (2019) Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk. J Basic Microbiol 59:744–753

    Article  CAS  PubMed  Google Scholar 

  13. Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface displayof exo—and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol Biofuels 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoon LW, Ngoh GC, Chua ASM, Patah MFA, Teoh WH (2019) Process intensification of cellulase and bioethanol production from sugarcane bagasse via an integrated saccharification and fermentation process. Chem Eng Process Process Intensif 142:107528

    Article  CAS  Google Scholar 

  15. Tran CTH, Nosworthy N, Bilek MMM, McKenzie DR (2015) Covalent immobilization of enzymes and yeast: towards a continuous simultaneous saccharification and fermentation process for cellulosic ethanol. Biomass Bioenerg 81:234–241

    Article  CAS  Google Scholar 

  16. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Servetas I, Berbegal C, Camacho N, Bekatorou A, Ferrer S, Nigam P, Drouza C, Koutinas AA (2013) Saccharomyces cerevisiae and Oenococcus oeni immobilized in different layers of a cellulose/starch gel composite for simultaneous alcoholic and malolactic wine fermentations. Process Biochem 48:1279–1284

    Article  CAS  Google Scholar 

  18. Panagopoulos V, Dima A, Boura K, Bosnea L, Nigam PS, Kanellaki M, Koutinas AA (2021) Cell factory models of non-engineered S. cerevisiae containing lactase in a second layer for lactose fermentation in one batch. Enzym Microb Technol 145:109750

    Article  CAS  Google Scholar 

  19. Drosos A, Boura K, Dima A, Soupioni M, Nigam P, Kanellaki M, Koutinas AA (2021) A cell-factory model of Saccharomyces cerevisiae based on bacterial cellulose without GMO for consolidated bioprocessing of starch. Food Bioprod Process 128:202–214

    Article  CAS  Google Scholar 

  20. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582

    Article  CAS  PubMed  Google Scholar 

  21. Plioni I, Bekatorou A, Mallouchos A, Kandylis P, Chiou A, Panagopoulou E, Dede V, Paraskevi S (2021) Corinthian currants finishing side-stream: chemical characterization, volatilome, and valorisation through wine and baker’s yeast production-technoeconomic evaluation. Food Chem 342:128161

    Article  CAS  PubMed  Google Scholar 

  22. Plioni I, Bekatorou A, Terpou A, Mallouchos A, Plessas S, Koutinas AA, Katechaki E (2021) Vinegar production from corinthian currants finishing side-stream: development and comparison of methods based on immobilized acetic acid bacteria. Foods 10:3133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalogeropoulou A, Plioni I, Dimitrellou D, Soupioni M, Nigam PS, Kanellaki M, Koutinas AA (2022) Biosynthesis of fuel-grade ethanol from cellobiose by a cell-factory of non-GMO Saccharomyces cerevisiae/starch-gel-cellulase. Fuel 313:122986

    Article  CAS  Google Scholar 

  24. Koutinas ΑΑ, Papafotopoulou-Patrinou E, Gialleli AI, Petsi Th, Bekatorou A, Kanellaki M (2016) Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase. Bioresour Technol 213:169–171

    Article  CAS  Google Scholar 

  25. Mattonai M, Pawcenis D, Seppia S, Lojewska J, Ribechini E (2018) Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresour Technol 270:270–277

    Article  CAS  PubMed  Google Scholar 

  26. Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod Biorefining 5:215–225

    Article  CAS  Google Scholar 

  27. Bali G, Meng X, Deneff J, Sun Q, Art R (2014) The effect of alkaline pretreatment methods on cellulose structure and accessibility. Chemsuschem 8:275–279

    Article  PubMed  Google Scholar 

  28. Funahashi R, Ono Y, Tanaka R, Yokoi M, Daido K, Inamochi T, Saito T, Horikawa Y, Isogai A (2018) Changes in the degree of polymerization of wood celluloses during dilute acid hydrolysis and TEMPO-mediated oxidation: formation mechanism of disordered regions along each cellulose microfibril. Int J Biol Macromol 109:914–920

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of this work by the project “Research Infrastructure on Food Bioprocessing Development and Innovation Exploitation—Food Innovation RI” (MIS 5027222), which was implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios A. Koutinas.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plioni, I., Kalogeropoulou, A., Dimitrellou, D. et al. Effect of cellulose crystallinity modification by starch gel treatment for improvement in ethanol fermentation rate by non-GM yeast cell factories. Bioprocess Biosyst Eng 45, 783–790 (2022). https://doi.org/10.1007/s00449-022-02706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02706-y

Keywords

Navigation