Skip to main content
Log in

Multiple crystallization as a potential strategy for efficient recovery of succinic acid following fermentation with immobilized cells

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (< 11 mg/g clay pebbles). The repeated batch-fermentation trials with immobilized cells highlighted that succinic acid with an average concentration of up to 36.3 g/L with a metabolite-production ratio of 3:1 (succinic acid to by-products) could be attained within 130 h. Subsequently, the purification of succinic acid through crystallization was assessed in terms of pH, temperature, crystallization time, initial succinic acid concentration and multiple recrystallization processes. Increasing the crystallization time from 6 h to 9 h afforded an improvement of 17% in the recovery of succinic acid crystals. Moreover, a fourfold concentration coefficient of the broth yielded the highest purity percentage (99.9%). The crystallization in three consecutive stages at 9 h (with a fourfold concentration coefficient) successfully improved the total recovery percentage of succinic acid from 55.0 to 84.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luthfi AAI, Manaf SFA, Illias RM, Harun S, Mohammad AW, Jahim JM (2017) Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources. Appl Microbiol Biotechnol 101(8):3055–3075

    Article  CAS  PubMed  Google Scholar 

  2. Kumar RV, Pakshirajan K, Pugazhenthi G (2017) Malic and succinic acid: potential C4 platform chemicals for polymer and biodegradable plastic production. Platform chemical biorefinery: future green chemistry. Elsevier, Amsterdam, pp 159–179

    Google Scholar 

  3. Law JY, Mohammad AW, Tee ZK, Zaman NK, Jahim JM, Santanaraj J, Sajab MS (2019) Recovery of succinic acid from fermentation broth by forward osmosis-assisted crystallization process. J Membr Sci 583:139–151

    Article  CAS  Google Scholar 

  4. Shah SSM, Luthfi AAI, Low KO, Harun S, Manaf SFA, Illias RM, Jahim JM (2019) Preparation of kenaf stem hemicellulosic hydrolysate and its fermentability in microbial production of xylitol by Escherichia coli BL21. Sci Rep 9(1):4080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ashter SA (2017) Technology and applications of polymers derived from biomass. Elsevier, Amsterdam, pp 1–286

    Google Scholar 

  6. Cheng KK, Zhao XB, Zeng J, Zhang JA (2012) Biotechnological production of succinic acid: current state and perspectives. Biofuel Bioprod Biorefinery 6(3):302–318

    Article  CAS  Google Scholar 

  7. Nghiem NP, Kleff S, Schwegmann S (2017) Succinic acid: technology development and commercialization. Fermentation 3(2):26

    Article  CAS  Google Scholar 

  8. Tan JP, Jahim JM, Harun S, Wu TY, Mumtaz T (2016) Utilization of oil palm fronds as a sustainable carbon source in biorefineries. Int J Hydrogen Energy 41(8):4896–4906

    Article  CAS  Google Scholar 

  9. Cao W, Wang Y, Luo J, Yin J, Xing J, Wan Y (2018) Succinic acid biosynthesis from cane molasses under low pH by Actinobacillus succinogenes immobilized in luffa sponge matrices. Bioresour Technol 268:45–51

    Article  CAS  PubMed  Google Scholar 

  10. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239

    Article  CAS  PubMed  Google Scholar 

  11. Dessie W, Xin F, Zhang W, Jiang Y, Wu H, Ma J, Jiang M (2018) Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol 102(23):9893–9910

    Article  CAS  PubMed  Google Scholar 

  12. Cok B, Tsiropoulos I, Roes AL, Patel MK (2014) Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuel Bioprod Biorefin 8(1):16–29

    Article  CAS  Google Scholar 

  13. Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  CAS  PubMed  Google Scholar 

  14. Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb Technol 39(3):352–361

    Article  CAS  Google Scholar 

  15. Chiang YS, Kuo YY, Li SY (2018) A novel method for preparing high purity Actinobacillus succinogenes stock and its long-term acid production in a packed bed reactor. Bioresour Technol Rep 2:62–68

    Article  Google Scholar 

  16. Luthfi AAI, Jahim JM, Harun S, Tan JP, Manaf SFA, Shah SSM (2018) Kinetics of the bioproduction of succinic acid by Actinobacillus succinogenes from oil palm lignocellulosic hydrolysate in a bioreactor. BioResources 13(4):8279–8294

    Article  CAS  Google Scholar 

  17. Urbance SE, Pometto AL, DiSpirito AA, Denli Y (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65(6):664–670

    Article  CAS  PubMed  Google Scholar 

  18. Luthfi AAI, Tan JP, Harun S, Manaf SFA, Jahim JM (2019) Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioproc Biosyst Eng 42(1):117–130

    Article  CAS  Google Scholar 

  19. Bradfield MF, Mohagheghi A, Salvachúa D, Smith H, Black BA, Dowe N, Beckham GT, Nicol W (2015) Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuels 8(1):181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen PC, Zheng P, Ye XY, Ji F (2017) Preparation of A. succinogenes immobilized microfiber membrane for repeated production of succinic acid. Enzyme Microb Technol 98:34–42

    Article  CAS  PubMed  Google Scholar 

  21. Kim N, Chang Y, Lee S, Kim MI, Kim NJ, Shang L, Chang Y, Lee S, Chang HN (2009) Continuous production of succinic acid using an external membrane cell recycle system. J Microbiol Biotechnol 19(11):1369–1373

    Article  CAS  PubMed  Google Scholar 

  22. Luthfi AAI, Jahim JM, Harun S, Tan JP, Mohammad AW (2017) Potential use of coconut shell activated carbon as an immobilisation carrier for high conversion of succinic acid from oil palm frond hydrolysate. RSC Adv 7(78):49480–49489

    Article  Google Scholar 

  23. Vichuviwat R, Boonsombuti A, Luengnaruemitchai A, Wongkasemjit S (2014) Enhanced butanol production by immobilized Clostridium beijerinckii TISTR 1461 using zeolite 13X as a carrier. Bioresour Technol 172:76–82

    Article  CAS  PubMed  Google Scholar 

  24. Chen P, Tao S, Zheng P (2016) Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresour Technol 211:406–413

    Article  CAS  PubMed  Google Scholar 

  25. Maharaj K, Bradfield MFA, Nicol W (2014) Succinic acid-producing biofilms of Actinobacillus succinogenes: reproducibility, stability and productivity. Appl Microbiol Biotechnol 98(17):7379–7386

    Article  CAS  PubMed  Google Scholar 

  26. Wang C, Ming W, Yan D, Zhang C, Yang M, Liu Y, Zhang Y, Guo B, Wan Y, Xing J (2014) Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate). Bioresour Technol 156:6–13

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Zhang M, Lawson T, Kanwal A, Miao Z (2019) Poly (butylene succinate-co-salicylic acid) copolymers and their effect on promoting plant growth. R Soc Open Sci 6(7):190504

    Article  PubMed  PubMed Central  Google Scholar 

  28. Song H, Huh YS, Lee SY, Hong WH, Hong YK (2007) Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain. J Biotechnol 132(4):445–452

    Article  CAS  PubMed  Google Scholar 

  29. Pratiwi AI, Yokouchi T, Matsumoto M, Kondo K (2015) Extraction of succinic acid by aqueous two-phase system using alcohols/salts and ionic liquids/salts. Sep Purif Technol 155:127–132

    Article  CAS  Google Scholar 

  30. Fu L, Gao X, Yang Y, Aiyong F, Hao H, Gao C (2014) Preparation of succinic acid using bipolar membrane electrodialysis. Sep Purif Technol 127:212–218

    Article  CAS  Google Scholar 

  31. Wu Z, Cravotto G, Ondruschka B, Stolle A, Li W (2016) Decomposition of chloroform and succinic acid by ozonation in a suction-cavitation system: effects of gas flow. Sep Purif Technol 161:25–31

    Article  CAS  Google Scholar 

  32. Peng J, Lai L, Jiang X, Jiang W, Lai B (2018) Catalytic ozonation of succinic acid in aqueous solution using the catalyst of Ni/Al2O3 prepared by electroless plating-calcination method. Sep Purif Technol 195:138–148

    Article  CAS  Google Scholar 

  33. Li QZ, Jiang XL, Feng XJ, Wang JM, Sun C, Zhang HB, Xian M, Liu HZ (2016) Recovery processes of organic acids from fermentation broths in the biomass-based industry. J Microbiol Biotechnol 26(1):1–8

    Article  PubMed  CAS  Google Scholar 

  34. Luque R, Lin CS, Du C, Macquarrie DJ, Koutinas A, Wang R, Webb C, Clark JH (2009) Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method. Green Chem 11(2):193–200

    Article  CAS  Google Scholar 

  35. Cao Y, Zhang R, Sun C, Cheng T, Liu Y, Xian M (2013) Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed Res Int 2013:723412

    PubMed  PubMed Central  Google Scholar 

  36. Nagy ZK, Chew JW, Fujiwara M, Braatz RD (2008) Comparative performance of concentration and temperature controlled batch crystallizations. J Process Control 18(3):399–407

    Article  CAS  Google Scholar 

  37. Cheng KK, Zhao XB, Zeng J, Wu RC, Xu YZ, Liu DH, Zhang JA (2012) Downstream processing of biotechnological produced succinic acid. Appl Microbiol Biotechnol 95(4):841–850

    Article  CAS  PubMed  Google Scholar 

  38. Li Q, Wang D, Wu Y, Li W, Zhang Y, Xing J, Su Z (2010) One step recovery of succinic acid from fermentation broths by crystallization. Sep Purif Technol 72(3):294–300

    Article  CAS  Google Scholar 

  39. Corona-Gonzalez RI, Miramontes-Murillo R, Arriola-Guevara E, Guatemala-Morales G, Toriz G, Pelayo-Ortiz C (2014) Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid. Bioresour Technol 164:113–118

    Article  CAS  PubMed  Google Scholar 

  40. Hong YK, Hong WH, Han DH (2001) Application of reactive extraction to recovery of carboxylic acids. Biotechnol Bioprocess Eng 6(6):386

    Article  CAS  Google Scholar 

  41. Sun Y, Yan L, Fu H, Xiu Z (2014) Salting-out extraction and crystallization of succinic acid from fermentation broths. Process Biochem 49(3):506–511

    Article  CAS  Google Scholar 

  42. Thuy NTH, Boontawan A (2017) Production of very-high purity succinic acid from fermentation broth using microfiltration and nanofiltration-assisted crystallization. J Membr Sci 524:470–481

    Article  CAS  Google Scholar 

  43. López-Garzón CS, Straathof AJ (2014) Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 32(5):873–904

    Article  PubMed  CAS  Google Scholar 

  44. Emrani P, Fatemi S, Ashraf TS (2011) Effect of synthesis parameters on phase purity, crystallinity and particle size of SAPO-34. Iran J Chem Chem Eng 30:29–36

    CAS  Google Scholar 

  45. Cavalcante de Amorim EL, Barros AR, Rissato Zamariolli Damianovic MH, Silva EL (2009) Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose. Int J Hydrog Energy 34(2):783–790

    Article  CAS  Google Scholar 

  46. Ivanova G, Rákhely G, Kovács KL (2008) Hydrogen production from biopolymers by Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization. Int J Hydrog Energy 33(23):6953–6961

    Article  CAS  Google Scholar 

  47. Zhao Z, Xie X, Wang Z, Tao Y, Niu X, Huang X, Liu L, Li Z (2016) Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production. J Biosci Bioeng 121(6):645–651

    Article  CAS  PubMed  Google Scholar 

  48. Khanna S, Goyal A, Moholkar VS (2013) Mechanistic investigation of ultrasonic enhancement of glycerol bioconversion by immobilized Clostridium pasteurianum on silica support. Biotechnol Bioeng 110(6):1637–1645

    Article  CAS  PubMed  Google Scholar 

  49. Brar SK, Sarma SJ, Pakshirajan K (2016) Platform chemical biorefinery: future green chemistry. Elsevier, Amsterdam, pp 1–528

    Google Scholar 

  50. Zheng P, Fang L, Xu Y, Dong JJ, Ni Y, Sun ZH (2010) Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresour Technol 101(20):7889–7894

    Article  CAS  PubMed  Google Scholar 

  51. Van Heerden CD, Nicol W (2013) Continuous succinic acid fermentation by Actinobacillus succinogenes. Biochem Eng J 73:5–11

    Article  CAS  Google Scholar 

  52. Mokwatlo SC, Nchabeleng ME, Brink HG, Nicol W (2019) Impact of metabolite accumulation on the structure, viability and development of succinic acid-producing biofilms of Actinobacillus succinogenes. Appl Microbiol Biotechnol 103(15):6205–6215

    Article  CAS  PubMed  Google Scholar 

  53. Yan Q, Zheng P, Dong JJ, Sun ZH (2014) A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes. J Chem Technol Biotechnol 89(11):1760–1766

    Article  CAS  Google Scholar 

  54. Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H (2014) Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresour Technol 174:190–197

    Article  CAS  PubMed  Google Scholar 

  55. Alexandri M, Papapostolou H, Stragier L, Verstraete W, Papanikolaou S, Koutinas AA (2017) Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresour Technol 238:214–222

    Article  CAS  PubMed  Google Scholar 

  56. Chen K, Zhang H, Miao Y, Wei P, Chen J (2011) Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes. Enzyme Microb Technol 48(4–5):339–344

    Article  CAS  PubMed  Google Scholar 

  57. Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN (2004) Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme Microb Technol 35(6–7):648–653

    Article  CAS  Google Scholar 

  58. Yu J, Li Z, Ye Q, Yang Y, Chen S (2010) Development of succinic acid production from corncob hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol 37(10):1033–1040

    Article  CAS  PubMed  Google Scholar 

  59. Zheng P, Dong JJ, Sun Z-H, Ni Y, Fang L (2009) Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol 100(8):2425–2429

    Article  CAS  PubMed  Google Scholar 

  60. Cimini D, Argenzio O, D’Ambrosio S, Lama L, Finore I, Finamore R, Pepe O, Faraco V, Schiraldi C (2016) Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresour Technol 222:355–360

    Article  CAS  PubMed  Google Scholar 

  61. Bradfield MFA, Nicol W (2014) Continuous succinic acid production by Actinobacillus succinogenes in a biofilm reactor: steady-state metabolic flux variation. Biochem Eng J 85:1–7

    Article  CAS  Google Scholar 

  62. Thuy NTH, Kongkaew A, Flood A, Boontawan A (2017) Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. Bioresour Technol 233:342–352

    Article  CAS  PubMed  Google Scholar 

  63. Huh YS, Jun YS, Hong YK, Song H, Lee SY, Hong WH (2006) Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens. Process Biochem 41(6):1461–1465

    Article  CAS  Google Scholar 

  64. Wibowo C, Chang WC, Ng KM (2001) Design of integrated crystallization systems. AIChE J 47(11):2474–2492

    Article  CAS  Google Scholar 

  65. Ravi B, Jegathesan A, Prasad BN, Sadeshkumar C, Rajarajan G (2013) Spectral diffraction and optical studies of succinic-acetic acid single crystals. Rasayan J Chem 6:334–341

    CAS  Google Scholar 

  66. Ober CA, Gupta RB (2012) Formation of itraconazole–succinic acid cocrystals by gas antisolvent cocrystallization. AAPS PharmSciTech 13(4):1396–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davison BH, Nghiem NP, Richardson GL (2004) Succinic acid adsorption from fermentation broth and regeneration. In: Proceedings of the twenty-fifth symposium on biotechnology for fuels and chemicals in Breckenridge, Colorado, pp 653–669

  68. Ponnampalam E (2001) Purification of organic acids using anion exchange chromatography. Google Patents

Download references

Acknowledgments

The authors wish to gratefully acknowledge the financial support for this work provided by Centre for Research and Instrumentation Management (CRIM), Universiti Kebangsaan Malaysia (UKM) through the grant provided under DIP-2018-024 on project entitled “Integrative Approach of Biorefinery and Energy Generation for High Purity of Succinic Acid and Hydrogen Production”. Also, the author wish to thank UKM-Yayasan Sime Darby Chair on Sustainable Development (PKT 6/2012) for providing postgraduate fellowship scheme for the extension of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamaliah Md Jahim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luthfi, A.A.I., Tan, J.P., Isa, N.F.A.M. et al. Multiple crystallization as a potential strategy for efficient recovery of succinic acid following fermentation with immobilized cells. Bioprocess Biosyst Eng 43, 1153–1169 (2020). https://doi.org/10.1007/s00449-020-02311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02311-x

Keywords

Navigation