Skip to main content

Advertisement

Log in

Electrochemical modeling of microbial fuel cells performance at different operating and structural conditions

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Organic matters are directly converted to electricity by microorganisms in microbial fuel cells (MFC). Modeling the performance of MFC sheds light on the behavior of MFC in various operational conditions (e.g. pH and temperature). In the present research, three voltage losses were considered for modeling of the MFC polarization curve. The current research is composed of two parts. In the first part, the polarization curves of various MFCs with different substrates (synthetic wastewater or industrial wastewaters) were reproduced by our model, and model parameters were obtained using experimental data and genetic algorithm optimization. In this part, the electrical performance of 26 systems (12 systems with synthetic wastewater and 14 systems with industrial wastewaters) were modeled with average relative error (ARE) of 17% and a coefficient of determination of 0.9. In the second part, the influence of temperature, pH and hydraulic retention time on the electrical performance of MFC were studied. In this part, parameters were estimated by conventional (estimation of model parameters in each point), and a novel method (estimation of model parameters as a function of operating parameters). It was shown that using second tuning method, the number of estimated parameters decreased, while the error of the model remained at an acceptable level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Adjustable parameters of exchange current (Eq. 1113)

ARE:

Absolute relative error

b :

Tafel’s slope (V)

C :

Concentration slope (V)

D :

Adjustable parameters of limiting current (Eq. 1113)

HRT:

Hydraulic retention time (h)

i :

Current (A)

OCV:

Open circuit voltage (V)

R ohm :

Ohmic resistance (Ω)

R :

Adjustable parameters of ohmic resistance (Eq. 1113)

T :

Temperature (K)

V :

Voltage (V)

η :

Potential (V)

act:

Activation

an:

Anode

cat:

Cathode

ohm:

Ohmic

l :

Limiting

concen:

Concentration

ex:

Experiment

T :

Temperature

h :

HRT

p :

PH

References

  1. Guo X, Zhan Y, Chen C, Cai B, Wang Y, Guo S (2016) Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renew Energy 87:437–444. https://doi.org/10.1016/j.renene.2015.10.041

    Article  CAS  Google Scholar 

  2. Logan BE (2007) Introduction. In: Microbial fuel cells. Wiley, USA, pp 1–11. doi:10.1002/9780470258590.ch1.

  3. Zhang X-C, Halme A (1995) Modelling of a microbial fuel cell process. Biotechnol Lett 17(8):809–814. https://doi.org/10.1007/BF00129009

    Article  CAS  Google Scholar 

  4. Kato Marcus A, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98(6):1171–1182. https://doi.org/10.1002/bit.21533

    Article  PubMed  CAS  Google Scholar 

  5. Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41(13):2921–2940. https://doi.org/10.1016/j.watres.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  6. Zeng Y, Choo YF, Kim B-H, Wu P (2010) Modelling and simulation of two-chamber microbial fuel cell. J Power Sources 195(1):79–89. https://doi.org/10.1016/j.jpowsour.2009.06.101

    Article  CAS  Google Scholar 

  7. Picioreanu C, van Loosdrecht MCM, Curtis TP, Scott K (2010) Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry 78(1):8–24. https://doi.org/10.1016/j.bioelechem.2009.04.009

    Article  PubMed  CAS  Google Scholar 

  8. Mahdi Mardanpour M, Nasr Esfahany M, Behzad T, Sedaqatvand R (2012) Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosens Bioelectron 38(1):264–269. https://doi.org/10.1016/j.bios.2012.05.046

    Article  CAS  Google Scholar 

  9. Jayasinghe N, Franks A, Nevin KP, Mahadevan R (2014) Metabolic modeling of spatial heterogeneity of biofilms in microbial fuel cells reveals substrate limitations in electrical current generation. Biotechnol J 9(10):1350–1361. https://doi.org/10.1002/biot.201400068

    Article  PubMed  CAS  Google Scholar 

  10. Pant D, Van Bogaert G, Álvarez-Gallego Y, Diels L, Vanbroekhoven K (2016) Evaluation of bioelectrogenic potential of four industrial effluents as substrate for low cost microbial fuel cells operation. Environ Eng Manag J 15(8):1897–1904

    Article  CAS  Google Scholar 

  11. Rossi R, Jones D, Myung J, Zikmund E, Yang W, Gallego YA, Pant D, Evans PJ, Page MA, Cropek DM, Logan BE (2019) Evaluating a multi-panel air cathode through electrochemical and biotic tests. Water Res 148:51–59. https://doi.org/10.1016/j.watres.2018.10.022

    Article  PubMed  CAS  Google Scholar 

  12. Mashkour M, Rahimnejad M, Pourali SM, Ezoji H, ElMekawy A, Pant D (2017) Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell. Prog Nat Sci Mater Int 27(6):647–651. https://doi.org/10.1016/j.pnsc.2017.11.003

    Article  CAS  Google Scholar 

  13. Pasupuleti SB, Srikanth S, Dominguez-Benetton X, Mohan SV, Pant D (2016) Dual gas diffusion cathode design for microbial fuel cell (MFC): optimizing the suitable mode of operation in terms of bioelectrochemical and bioelectro-kinetic evaluation. J Chem Technol Biotechnol 91(3):624–639. https://doi.org/10.1002/jctb.4613

    Article  CAS  Google Scholar 

  14. Ortiz-Martínez VM, Salar-García MJ, de los Ríos AP, Hernández-Fernández FJ, Egea JA, Lozano LJ (2015) Developments in microbial fuel cell modeling. Chem Eng J 271:50–60. https://doi.org/10.1016/j.cej.2015.02.076

    Article  CAS  Google Scholar 

  15. Harnisch F, Warmbier R, Schneider R, Schröder U (2009) Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems. Bioelectrochemistry 75(2):136–141. https://doi.org/10.1016/j.bioelechem.2009.03.001

    Article  PubMed  CAS  Google Scholar 

  16. Wen Q, Wu Y, Cao D, Zhao L, Sun Q (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour Technol 100(18):4171–4175. https://doi.org/10.1016/j.biortech.2009.02.058

    Article  PubMed  CAS  Google Scholar 

  17. Özkaya B, Cetinkaya AY, Cakmakci M, Karadağ D, Sahinkaya E (2013) Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material. Bioprocess Biosyst Eng 36(4):399–405. https://doi.org/10.1007/s00449-012-0796-z

    Article  PubMed  CAS  Google Scholar 

  18. Kakarla R, Min B (2014) Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs carbon brush cathode. Bioprocess Biosyst Eng 37(12):2453–2461. https://doi.org/10.1007/s00449-014-1223-4

    Article  PubMed  CAS  Google Scholar 

  19. Ozkaya B, Akoglu B, Karadag D, Acı G, Taskan E, Hasar H (2012) Bioelectricity production using a new electrode in a microbial fuel cell. Bioprocess Biosyst Eng 35(7):1219–1227. https://doi.org/10.1007/s00449-012-0709-1

    Article  PubMed  CAS  Google Scholar 

  20. Nourbakhsh F, Mohsennia M, Pazouki M (2017) Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell. Bioprocess Biosyst Eng 40(11):1669–1677. https://doi.org/10.1007/s00449-017-1822-y

    Article  PubMed  CAS  Google Scholar 

  21. Heidrich ES, Dolfing J, Wade MJ, Sloan WT, Quince C, Curtis TP (2018) Temperature, inocula and substrate: Contrasting electroactive consortia, diversity and performance in microbial fuel cells. Bioelectrochemistry 119:43–50. https://doi.org/10.1016/j.bioelechem.2017.07.006

    Article  PubMed  CAS  Google Scholar 

  22. Kim H, Kim B, Kim J, Yu J (2015) Effect of organic loading rates and influent sources on energy production in multi-baffled single chamber microbial fuel cell. Desalin Water Treat 56(5):1217–1222. https://doi.org/10.1080/19443994.2014.950986

    Article  CAS  Google Scholar 

  23. Raghavulu SV, Mohan SV, Goud RK, Sarma PN (2009) Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun 11(2):371–375. https://doi.org/10.1016/j.elecom.2008.11.038

    Article  CAS  Google Scholar 

  24. He Z, Huang Y, Manohar AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74(1):78–82. https://doi.org/10.1016/j.bioelechem.2008.07.007

    Article  PubMed  CAS  Google Scholar 

  25. Vologni V, Kakarla R, Angelidaki I, Min B (2013) Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions. Bioprocess Biosyst Eng 36(5):635–642. https://doi.org/10.1007/s00449-013-0918-2

    Article  PubMed  CAS  Google Scholar 

  26. Radeef AY, Ismail ZZ (2019) Polarization model of microbial fuel cell for treatment of actual potato chips processing wastewater associated with power generation. J Electroanal Chem 836:176–181. https://doi.org/10.1016/j.jelechem.2019.02.001

    Article  CAS  Google Scholar 

  27. Hernández-Flores G, Poggi-Varaldo HM, Solorza-Feria O, Ponce Noyola MT, Romero-Castañón T, Rinderknecht-Seijas N (2015) Tafel equation based model for the performance of a microbial fuel cell. Int J Hydrogen Energy 40(48):17421–17432. https://doi.org/10.1016/j.ijhydene.2015.06.119

    Article  CAS  Google Scholar 

  28. Kadivarian M, Dadkhah AA, Esfahany MN (2019) Effect of cell structure and heat pretreating of the microorganisms on performance of a microbial fuel cell. Water Sci Technol. https://doi.org/10.2166/wst.2019.174

    Article  PubMed  Google Scholar 

  29. Wang W, Wei X, Choi D, Lu X, Yang G, Sun C (2015) Chapter 1—Electrochemical cells for medium- and large-scale energy storage: fundamentals. In: Menictas C, Skyllas-Kazacos M, Lim TM (eds) Advances in batteries for medium and large-scale energy storage. Woodhead Publishing, UK, pp 3–28. doi:10.1016/B978-1-78242-013-2.00001-7.

    Chapter  Google Scholar 

  30. Pandey P, Shinde VN, Deopurkar RL, Kale SP, Patil SA, Pant D (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723. https://doi.org/10.1016/j.apenergy.2016.01.056

    Article  CAS  Google Scholar 

  31. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017

    Article  PubMed  CAS  Google Scholar 

  32. Yaws CL (2009) Chapter 12—Diffusion coefficient in water—organic compounds. In: Transport properties of chemicals and hydrocarbons. William Andrew Publishing, Boston, pp 502–593. doi:10.1016/B978-0-8155-2039-9.50017-X.

    Chapter  Google Scholar 

  33. Biffinger JC, Pietron J, Bretschger O, Nadeau LJ, Johnson GR, Williams CC, Nealson KH, Ringeisen BR (2008) The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens Bioelectron 24(4):900–905. https://doi.org/10.1016/j.bios.2008.07.034

    Article  CAS  Google Scholar 

  34. Rahimnejad M, Ghoreyshi AA, Najafpour G, Jafary T (2011) Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl Energy 88(11):3999–4004. https://doi.org/10.1016/j.apenergy.2011.04.017

    Article  CAS  Google Scholar 

  35. Jayashree C, Tamilarasan K, Rajkumar M, Arulazhagan P, Yogalakshmi KN, Srikanth M, Banu JR (2016) Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. J Environ Manag 180:351–358. https://doi.org/10.1016/j.jenvman.2016.05.050

    Article  CAS  Google Scholar 

  36. Sonawane JM, Marsili E, Chandra Ghosh P (2014) Treatment of domestic and distillery wastewater in high surface microbial fuel cells. Int J Hydrogen Energy 39(36):21819–21827. https://doi.org/10.1016/j.ijhydene.2014.07.085

    Article  CAS  Google Scholar 

  37. Hassan SHA, Kim YS, Oh S-E (2012) Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzyme Microb Technol 51(5):269–273. https://doi.org/10.1016/j.enzmictec.2012.07.008

    Article  PubMed  CAS  Google Scholar 

  38. Jafary T, Rahimnejad M, Ghoreyshi AA, Najafpour G, Hghparast F, Daud WRW (2013) Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers Manage 75(Suppl C):256–262. https://doi.org/10.1016/j.enconman.2013.06.032

    Article  CAS  Google Scholar 

  39. Haavisto JM, Kokko ME, Lay C-H, Puhakka JA (2017) Effect of hydraulic retention time on continuous electricity production from xylose in up-flow microbial fuel cell. Int J Hydrogen Energy 42(45):27494–27501. https://doi.org/10.1016/j.ijhydene.2017.05.068

    Article  CAS  Google Scholar 

  40. Santoro C, Rojas-Carbonell S, Awais R, Gokhale R, Kodali M, Serov A, Artyushkova K, Atanassov P (2018) Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance. J Power Sources 375:11–20. https://doi.org/10.1016/j.jpowsour.2017.11.039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nimje VR, Chen C-Y, Chen C-C, Chen H-R, Tseng M-J, Jean J-S, Chang Y-F (2011) Glycerol degradation in single-chamber microbial fuel cells. Bioresour Technol 102(3):2629–2634. https://doi.org/10.1016/j.biortech.2010.10.062

    Article  PubMed  CAS  Google Scholar 

  42. Kim JR, Jung SH, Regan JM, Logan BE (2007) Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour Technol 98(13):2568–2577. https://doi.org/10.1016/j.biortech.2006.09.036

    Article  PubMed  CAS  Google Scholar 

  43. Zhuang L, Zhou S, Li Y, Yuan Y (2010) Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour Technol 101(10):3514–3519. https://doi.org/10.1016/j.biortech.2009.12.105

    Article  PubMed  CAS  Google Scholar 

  44. Feng Y, Yang Q, Wang X, Liu Y, Lee H, Ren N (2011) Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour Technol 102(1):411–415. https://doi.org/10.1016/j.biortech.2010.05.059

    Article  PubMed  CAS  Google Scholar 

  45. Yu N, Xing D, Li W, Yang Y, Li Z, Li Y, Ren N (2017) Electricity and methane production from soybean edible oil refinery wastewater using microbial electrochemical systems. Int J Hydrogen Energy 42(1):96–102. https://doi.org/10.1016/j.ijhydene.2016.11.116

    Article  CAS  Google Scholar 

  46. Santoro C, Ieropoulos I, Greenman J, Cristiani P, Vadas T, Mackay A, Li B (2013) Power generation and contaminant removal in single chamber microbial fuel cells (SCMFCs) treating human urine. Int J Hydrogen Energy 38(26):11543–11551. https://doi.org/10.1016/j.ijhydene.2013.02.070

    Article  CAS  Google Scholar 

  47. Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J (2010) Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour Technol 101(24):9594–9599. https://doi.org/10.1016/j.biortech.2010.07.082

    Article  PubMed  CAS  Google Scholar 

  48. Venkata Mohan S, Mohanakrishna G, Velvizhi G, Babu VL, Sarma PN (2010) Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J 51(1):32–39. https://doi.org/10.1016/j.bej.2010.04.012

    Article  CAS  Google Scholar 

  49. Divya Priya A, Pydi Setty Y (2019) Cashew apple juice as substrate for microbial fuel cell. Fuel 246:75–78. https://doi.org/10.1016/j.fuel.2019.02.100

    Article  CAS  Google Scholar 

  50. Gurung A, Oh SE (2015) Rice Straw as a Potential Biomass for Generation of Bioelectrical Energy Using Microbial Fuel Cells (MFCs). Energy Sources, Part A Recover Utilization Environ Effects 37(24):2625–2631. https://doi.org/10.1080/15567036.2012.728678

    Article  CAS  Google Scholar 

  51. Huang L, Yang X, Quan X, Chen J, Yang F (2010) A microbial fuel cell–electro-oxidation system for coking wastewater treatment and bioelectricity generation. J Chem Technol Biotechnol 85(5):621–627. https://doi.org/10.1002/jctb.2320

    Article  CAS  Google Scholar 

  52. Tremouli A, Martinos M, Lyberatos G (2017) The effects of salinity, pH and temperature on the performance of a microbial fuel cell. Waste Biomass Valorization 8(6):2037–2043. https://doi.org/10.1007/s12649-016-9712-0

    Article  CAS  Google Scholar 

  53. Cheng S, Xing D, Logan BE (2011) Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron 26(5):1913–1917. https://doi.org/10.1016/j.bios.2010.05.016

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Karamzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadivarian, M., Karamzadeh, M. Electrochemical modeling of microbial fuel cells performance at different operating and structural conditions. Bioprocess Biosyst Eng 43, 393–401 (2020). https://doi.org/10.1007/s00449-019-02235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02235-1

Keywords

Navigation