Skip to main content

Advertisement

Log in

Sensitivity analysis and reduction of a dynamic model of a bioproduction of fructo-oligosaccharides

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Starting from a relatively detailed model of a bioprocess producing fructo-oligosaccharides, a set of experimental data collected in batch and fed-batch experiments is exploited to estimate the unknown model parameters. The original model includes the growth of the fungus Aureobasidium pullulans which produces the enzymes responsible for the hydrolysis and transfructosylation reactions, and as such contains 25 kinetic parameters and 16 pseudo-stoichiometric coefficients, which are not uniquely identifiable with the data at hand. The aim of this study is, therefore, to show how sensitivity analysis and quantitative indicators based on the Fisher information matrix can be used to reduce the detailed model to a practically identifiable model. Parametric sensitivity analysis can indeed be used to progressively simplify the model to a representation involving 15 kinetic parameters and 8 pseudo-stoichiometric coefficients. The reduced model provides satisfactory prediction and can be convincingly cross validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GF:

Sucrose concentration (\({\text{g}\, {\rm L}^{-1}}\))

\({\text{GF}}_2\) :

1-Kestose concentration (\({\text{g}\,{\rm L}^{-1}}\))

\({{\text{GF}}_3}\) :

Nystose concentration (\({\text{g}\, {\rm L}^{-1}}\))

GF\(_4\) :

Fructofuranosylnystose concentration (\({\text{g} \,{\rm L}^{-1}}\))

F:

Fructose concentration (\({\text{g}\, {\rm L}^{-1}}\))

G:

Glucose concentration (\({\text{g} \,{\rm L}^{-1}}\))

X :

Biomass concentration (\({\text{g} \,{\rm L}^{-1}}\))

\(r_i, i=1,\ldots ,4\) :

Hydrolysis reaction rates (\({\text{g} \,{\rm L}^{-1} \,{\rm h}^{-1}}\))

\(r_i, i=5,6,7\) :

Transfructosylation reaction rates (\({\text{g} \,{\rm L}^{-1}\, {\rm h}^{-1}}\))

\(r_i, i=8,9\) :

Biomass production reaction rates (\({\text{g} \,{\rm L}^{-1} \,{\rm h}^{-1}}\))

\(k_i, i=1,\ldots ,14\) :

Pseudo-stoichiometric coefficients

\(Y_\text{F}\) :

Biomass yield coefficient from fructose

\(Y_\text{G}\) :

Biomass yield coefficient from glucose

\({\text{Vmh}_\text{GF}}\) :

Maximum hydrolysis rate for sucrose (\({\text{g}\,{\rm L}^{-1}\,{\rm h}^{-1}}\))

\({\text{Kmh}_\text{GF}}\) :

Michaelis–Menten constant for sucrose (\({\text{g} \,{\rm L}^{-1}}\))

\(\text{Vmh}_{{\rm GF}_i}\) :

Maximum hydrolysis rate for \({\rm GF}_i\) (\({\text{g}\, {\rm L}^{-1}\,{\rm h}^{-1}}\))

\(\text{Kmh}_{{\rm GF}_i}\) :

Michaelis–Menten constant for \(\text{GF}_i\) (\({\text{g} \,{\rm L}^{-1}}\))

\(\text{Kih}_{{\rm GF}_i}\) :

Substrate inhibition constant for \(\text{GF}_i\) (\({\text{g} \,{\rm L}^{-1}}\))

\(\text{VmT}_{{\rm GF}}\) :

Maximum transfructosylation rate for sucrose (\({\text{g}\,{\rm L}^{-1}\,{\rm h}^{-1}}\))

Kmst:

Michaelis–Menten constant for sucrose (\({\text{g} \,{\rm L}^{-1}}\))

Ksts:

Substrate inhibition constant for sucrose (\({\text{g} \,{\rm L}^{-1}}\))

Kgst:

Competitive inhibition constant for glucose

\({{\rm VmT}_{{\rm GF}_i}}\) :

Maximum transfructosylation rate for \(\text{GF}_i\) (\({\text{g}\,{\rm L}^{-1}{\rm h}^{-1}}\))

\(\text{Kmt}_{\text{GF}_i}\) :

Michaelis–Menten constant for \(\text{GF}_i\) (\({\text{g} \,{\rm L}^{-1}}\))

\(\text{Kit}_{{\rm GF}_i}\) :

Competitive inhibition constant for \(\text{GF}_i\)

\(\mu _{\rm mF}\) :

Maximum specific growth rate for fructose (\(\text{h}^{-1}\))

\(K_\text{F}\) :

Monod constant of fructose (\({\text{g}\,{\rm L}^{-1}}\))

\(\mu _\text{mG}\) :

Maximum specific growth rate for glucose (\({{\rm h}^{-1}}\))

\(K_\text{G}\) :

Monod constant of glucose (\({\text{g}\,{\rm L}^{-1}}\))

V :

Culture volume (L)

References

  1. Alvarado-Huallanco M, Maugeri-Filho F (2010) Kinetics and modeling of fructooligosaccharide synthesis by immobilized fructosyltransferase from Rhodotorula sp. J Chem Technol Biotechnol 85:1654–1662

    Article  CAS  Google Scholar 

  2. Aso Y, Akaza H, Kotake T, Tsukamoto T, Imai K, Naito S (1995) The BLP Study Group: preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. Eur Urol 27:104–109

    Article  CAS  Google Scholar 

  3. Aso Y, Akazan H, Group BS (1992) Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. Urol Int 49:125–129

    Article  CAS  Google Scholar 

  4. Castro C, Nobre C, Duprez M, Weireld GD, Hantson A (2017) Screening and selection of potential carriers to immobilize Aureobasidium pullulans cells for fructo-oligosaccharides production. Biochem Eng J 118:82–90

    Article  CAS  Google Scholar 

  5. Dias L, Velosoand A, Correia D, Rocha O, Torres D, Rocha I, Rodrigues L, Peres A (2009) UV spectrophotometry method for the monitoring of galacto-oligosaccharides production. Food Chem 113:246–252

    Article  CAS  Google Scholar 

  6. Dominguez A, Nobre C, Rodrigues L, Peres A, Torres D, Rocha I (2012) New improved method for fructooligosaccharides production by Aureobasidium pullulans. Carbohydrate Polym 89:1174–1179

    Article  CAS  Google Scholar 

  7. Donoso-Bravo A, Mailier J, Ruiz-Filippi G, Vande Wouwer A (2013) Identification in an anaerobic batch system: global sensitivity analysis, multi-start strategy and optimization criterion selection. Bioprocess Biosyst Eng 36:35–43

    Article  CAS  Google Scholar 

  8. Duan K, Chen J, Sheu D (1994) Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme Microb Technol 16:334–339

    Article  CAS  Google Scholar 

  9. Duan KJ, Chen JS, Sheu DC (1994) Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Enzyme Microbial Technol 16:334–339

    Article  CAS  Google Scholar 

  10. Fekih-Salem R, Vande Wouwer A, Castro CD, Nobre C, Hantson A (2015) Parameter identification of the fermentative production of fructo-oligosaccharides by Aureobasidium pullulans. In: Proceedings of the 19th international conference on system theory, control and computing, pp 43–48

  11. Fiordalis A, Georgakis C (2013) Data-driven, using design of dynamic experiments, versus model-driven optimization of batch crystallization processes. J Process Control 23(2):179–188

    Article  CAS  Google Scholar 

  12. Gibson G (1998) Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose. Br J Nutr 80:209–212

    Article  Google Scholar 

  13. Golub G, Loan CV (2013) Matrix computations. Studies in mathematical sciences, 4th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  14. Grosfils A, Vande Wouwer A, Bogaerts P (2007) On a general model structure for macroscopic biological reaction rates. J Biotechnol 130:253–264

    Article  CAS  Google Scholar 

  15. Guio F, Rugeles L, Rojas S, Palomino M, Camargo M, Sanchez O (2012) Kinetic modeling of fructooligosaccharide production using Aspergillus oryzae N74. Appl Biochem Biotechnol 167:142–163

    Article  CAS  Google Scholar 

  16. Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Dellino G, Meloni C (eds) Uncertainty management in simulation-optimization of complex systems. Operations research/computer science interfaces, vol 59. Springer, Boston

    Chapter  Google Scholar 

  17. Joshi M, Seidel-Morgenstern A, Kremling A (2006) Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems. Metab Eng 8:447–455

    Article  CAS  Google Scholar 

  18. Jung K, Run JW, Kang KR, Lim JY, Lee JH (1989) Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose. Enzyme Microb Technol 11:491–494

    Article  CAS  Google Scholar 

  19. Kiparissides A, Georgakis C, Mantalaris A, Pistikopoulos EN (2014) Design of in silico experiments as a tool for nonlinear sensitivity analysis of knowledge-driven models. Ind Eng Chem Res 53(1):7517–7525

    Article  CAS  Google Scholar 

  20. Mutanda T, Mokoena M, Olaniran A, Wilhelmi B, Whiteley C (2014) Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides: recent advances and current perspectives. J Ind Microbiol Biotechnol 41(6):893–906

    Article  CAS  Google Scholar 

  21. Nishizawa K, Nakajima M, Nabetani H (2001) Kinetic study on transfructosylation by b-fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production. Food Sci Technol Res 7(1):39–44

    Article  CAS  Google Scholar 

  22. Nobre C, Santos M, Dominguez A, Torres D, Rocha O, Peres A, Rocha I, Ferreira E, Teixeira J, Rodrigues L (2009) Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins. Anal Chim Acta 654(1):71–76

    Article  CAS  Google Scholar 

  23. Preter VD, Hamer HM, Windey K, Verbeke K (2011) The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health? Mol Nutr Food Res 55:46–57

    Article  Google Scholar 

  24. Rocha O, Nobre C, Dominguez A, Torres D, Faria N, Rodrigues L, Teixeira J, Ferreira E, Rocha I (2009) A dynamical model for the fermentative production of fructooligosaccharides. In: 10th International Symposium on process systems engineering, pp 1–7

    Google Scholar 

  25. Sangeetha P, Ramesh M, Prapulla S (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457

    Article  CAS  Google Scholar 

  26. Schenkendorf R, Kremling A, Mangold M (2009) Optimal experimental design with the sigma point method. IET Syst Biol 3:10–23

    Article  CAS  Google Scholar 

  27. Schorsch J, Kinnaert M, Fekih-Salem R, Dewasme L, Castro C, Vande Wouwer A (2018) Identification and optimal control of fructo-oligosaccharide production. IFAC-PapersOnLine 51(18):678–683

    Article  Google Scholar 

  28. Simeone M, Hogue I, Ray C, Kirschner D (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196

    Article  Google Scholar 

  29. Walter E, Pronzato L (1997) Identification of parametric models from experimental data. Communications and control engineering. Springer, Berlin

    Google Scholar 

  30. Yun JW, Song SK (1993) The production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose-oxidase. Biotechnol Lett 15:573–576

    Article  CAS  Google Scholar 

  31. Zak D, Gonye G, Schwaber J, Doyle F (2003) Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res 13:2396–2405

    Article  CAS  Google Scholar 

  32. Zhao QH, Urosević D, Mladenović N, Hansen P (2009) A restarted and modified simplex search for unconstrained optimization. Comput Oper Res 36(12):3263–3271

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the F.R.S.-FNRS, the Belgium National Fund for the Scientific Research (Research Project 24643.08). C. Nobre thanks the Fundação para a Ciência e Tecnologia for the strategic funding of UID/BIO/04469 /2013 unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dewasme.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fekih-Salem, R., Dewasme, L., Castro, C.C. et al. Sensitivity analysis and reduction of a dynamic model of a bioproduction of fructo-oligosaccharides. Bioprocess Biosyst Eng 42, 1793–1808 (2019). https://doi.org/10.1007/s00449-019-02176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02176-9

Keywords

Navigation