Skip to main content
Log in

Evaluation of multiple fused partners on enhancing soluble level of prenyltransferase NovQ in Escherichia coli

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To obtain the soluble production of recombinant NovQ, it has been constructed into the pET28a system. Unfortunately, NovQ was mostly accumulated as inclusion bodies and existed in insoluble fractions of E. coli cell lysate. Four partners, namely His6, TrxA, GST and MBP, were investigated in fusion expression and co-expression to achieve soluble expression in E. coli strains BL21 (DE3) and Rosetta™ (DE3). MBP fusion expression revealed a forceful function in enhancing solubility compared with others, in which the soluble protein was approximately 70% of the total cellular proteins in E. coli. Improvement of rare tRNA abundance promoted the yield of total recombinant protein and the expression level of soluble protein. Besides, one-step purification method was applied and the purity of recombinant protein obtained using Ni–NTA resin was over 90%, where soluble recombinant MBP-NovQ was cleaved using TEV protease in vitro. This method could be an ideal method for soluble expression of ABBA prenyltransferases in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Botta B, Delle Monache G, Menendez P, Boffi A (2005) Novel prenyltransferase enzymes as a tool for flavonoid prenylation. Trends Pharmacol Sci 26(12):606–608. https://doi.org/10.1016/j.tips.2005.09.012

    Article  CAS  PubMed  Google Scholar 

  2. Li Z, Zhao G, Liu H, Guo Y, Wu H, Sun X, Wu X, Zheng Z (2017) Biotransformation of menadione to its prenylated derivative MK-3 using recombinant Pichia pastoris. J Ind Microbiol Biotechnol 44(7):973–985. https://doi.org/10.1007/s10295-017-1931-2

    Article  CAS  PubMed  Google Scholar 

  3. Haagen Y, Unsold I, Westrich L, Gust B, Richard SB, Noel JP, Heide L (2007) A soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates. FEBS Lett 581(16):2889–2893. https://doi.org/10.1016/j.febslet.2007.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumano T, Richard SB, Noel JP, Nishiyama M, Kuzuyama T (2008) Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities. Bioorg Med Chem 16(17):8117–8126. https://doi.org/10.1016/j.bmc.2008.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wei H, Zhao G, Liu H, Wang H, Ni W, Wang P, Zheng Z (2018) A simple and efficient method for the extraction and separation of menaquinone homologs from wet biomass of Flavobacterium. Bioprocess Biosyst Eng 41(1):107–113. https://doi.org/10.1007/s00449-017-1851-6

    Article  CAS  PubMed  Google Scholar 

  6. Kuzuyama T (2017) Biosynthetic studies on terpenoids produced by Streptomyces. J Antibiot (Tokyo) 70(7):811–818. https://doi.org/10.1038/ja.2017.12

    Article  CAS  Google Scholar 

  7. Zhao W, Fan A, Tarcz S, Zhou K, Yin WB, Liu XQ, Li SM (2017) Mutation on Gly115 and Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 increases its catalytic activity toward hydroxynaphthalenes. Appl Microbiol Biotechnol 101(5):1989–1998. https://doi.org/10.1007/s00253-016-7966-x

    Article  CAS  PubMed  Google Scholar 

  8. Zeyhle P, Bauer JS, Kalinowski J, Shin-ya K, Gross H, Heide L (2014) Genome-based discovery of a novel membrane-bound 1,6-dihydroxyphenazine prenyltransferase from a marine actinomycete. PLoS One 9(6):e99122. https://doi.org/10.1371/journal.pone.0099122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saleh O, Haagen Y, Seeger K, Heide L (2009) Prenyl transfer to aromatic substrates in the biosynthesis of aminocoumarins, meroterpenoids and phenazines: the ABBA prenyltransferase family. Phytochemistry 70(15–16):1728–1738. https://doi.org/10.1016/j.phytochem.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  10. Pojer F, Wemakor E, Kammerer B, Chen H, Walsh CT, Li SM, Heide L (2003) CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Proc Natl Acad Sci USA 100(5):2316–2321. https://doi.org/10.1073/pnas.0337708100

    Article  CAS  PubMed  Google Scholar 

  11. Ozaki T, Mishima S, Nishiyama M, Kuzuyama T (2009) NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids. J Antibiot (Tokyo) 62(7):385–392. https://doi.org/10.1038/ja.2009.48

    Article  CAS  Google Scholar 

  12. Kuzuyama T, Noel JP, Richard SB (2005) Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435(7044):983–987. https://doi.org/10.1038/nature03668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang J, Lv X, Xu R, Tao X, Dong Y, Sun A, Wei D (2015) Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli. Appl Microbiol Biotechnol 99(16):6705–6713. https://doi.org/10.1007/s00253-015-6441-4

    Article  CAS  PubMed  Google Scholar 

  14. Su B, Wu M, Zhang Z, Lin J, Yang L (2015) Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng 31:112–122. https://doi.org/10.1016/j.ymben.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  15. Kopp J, Slouka C, Ulonska S, Kager J, Fricke J, Spadiut O, Herwig C (2017) Impact of glycerol as carbon source onto specific sugar and inducer uptake rates and inclusion body productivity in E. coli BL21(DE3). Bioengineering (Basel). https://doi.org/10.3390/bioengineering5010001

    Article  Google Scholar 

  16. Tong Y, Feng S, Xin Y, Yang H, Zhang L, Wang W, Chen W (2016) Enhancement of soluble expression of codon-optimized Thermomicrobium roseum sarcosine oxidase in Escherichia coli via chaperone co-expression. J Biotechnol 218:75–84. https://doi.org/10.1016/j.jbiotec.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Fraga B, da Silva AF, Lopez-Seijas J, Sieiro C (2015) Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains. Bioprocess Biosyst Eng 38(12):2477–2486. https://doi.org/10.1007/s00449-015-1485-5

    Article  CAS  PubMed  Google Scholar 

  18. Demonte D, Dundas CM, Park S (2014) Expression and purification of soluble monomeric streptavidin in Escherichia coli. Appl Microbiol Biotechnol 98(14):6285–6295. https://doi.org/10.1007/s00253-014-5682-y

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Ma X, Hou Z, Xue X, Meng J, Li M, Jia M, Luo X (2012) High cell density cultivation of recombinant Escherichia coli for prodrug of recombinant human GLPs production. Protein Expr Purif 85(1):38–43. https://doi.org/10.1016/j.pep.2012.06.016

    Article  CAS  PubMed  Google Scholar 

  20. Winter J, Gleiter S, Klappa P, Lilie H (2011) Protein disulfide isomerase isomerizes non-native disulfide bonds in human proinsulin independent of its peptide-binding activity. Protein Sci 20(3):588–596. https://doi.org/10.1002/pro.592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuda T, Watanabe S, Kigawa T (2013) Cell-free synthesis system suitable for disulfide-containing proteins. Biochem Biophys Res Commun 431(2):296–301. https://doi.org/10.1016/j.bbrc.2012.12.107

    Article  CAS  PubMed  Google Scholar 

  22. Jung HJ, Kim SK, Min WK, Lee SS, Park K, Park YC, Seo JH (2011) Polycationic amino acid tags enhance soluble expression of Candida antarctica lipase B in recombinant Escherichia coli. Bioprocess Biosyst Eng 34(7):833–839. https://doi.org/10.1007/s00449-011-0533-z

    Article  CAS  PubMed  Google Scholar 

  23. Mousavi SB, Fazeli A, Shojaosadati SA, Fazeli MR, Hashemi-Najafabadi S (2017) Purification and efficient refolding process for recombinant tissue-type plasminogen activator derivative (reteplase) using glycerol and Tranexamic acid. Process Biochem 53:135–144. https://doi.org/10.1016/j.procbio.2016.11.020

    Article  CAS  Google Scholar 

  24. Mollaev M, Gorokhovets N, Nikolskaya E, Faustova M, Zabolotsky A, Sokol M, Tereshenko O, Zhunina O, Shvets V, Severin E, Yabbarov N (2018) Recombinant alpha-fetoprotein receptor-binding domain co-expression with polyglutamate tags facilitates in vivo folding in E. coli. Protein Expr Purif 143:77–82. https://doi.org/10.1016/j.pep.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  25. Heiker JT, Kloting N, Bluher M, Beck-Sickinger AG (2010) Access to gram scale amounts of functional globular adiponectin from E. coli inclusion bodies by alkaline-shock solubilization. Biochem Biophys Res Commun 398(1):32–37. https://doi.org/10.1016/j.bbrc.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  26. Ohara K, Mito K, Yazaki K (2013) Homogeneous purification and characterization of LePGT1—a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon. FEBS J 280(11):2572–2580. https://doi.org/10.1111/febs.12239

    Article  CAS  PubMed  Google Scholar 

  27. Ni H, Guo PC, Jiang WL, Fan XM, Luo XY, Li HH (2016) Expression of nattokinase in Escherichia coli and renaturation of its inclusion body. J Biotechnol 231:65–71. https://doi.org/10.1016/j.jbiotec.2016.05.034

    Article  CAS  PubMed  Google Scholar 

  28. Kong B, Guo GL (2014) Soluble expression of disulfide bond containing proteins FGF15 and FGF19 in the cytoplasm of Escherichia coli. PLoS One 9(1):e85890. https://doi.org/10.1371/journal.pone.0085890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saeed H, Ali H, Soudan H, Embaby A, El-Sharkawy A, Farag A, Hussein A, Ataya F (2018) Molecular cloning, structural modeling and production of recombinant Aspergillus terreusl. asparaginase in Escherichia coli. Int J Biol Macromol 106:1041–1051. https://doi.org/10.1016/j.ijbiomac.2017.08.110

    Article  CAS  PubMed  Google Scholar 

  30. Han T, Ming H, Deng L, Zhu H, Liu Z, Zhang J, Song Y (2017) A novel expression vector for the improved solubility of recombinant scorpion venom in Escherichia coli. Biochem Biophys Res Commun 482(1):120–125. https://doi.org/10.1016/j.bbrc.2016.09.047

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Sun J, Xiao W, Jiang L, Wang R, Fan J (2017) Change of the N-terminal codon bias combined with tRNA supplementation outperforms the selected fusion tags for production of human D-amino acid oxidase as active inclusion bodies. Biotechnol Lett 39(11):1733–1740. https://doi.org/10.1007/s10529-017-2413-3

    Article  CAS  PubMed  Google Scholar 

  32. BEDOUELLE H DP (1988) Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose-Export of the Klenow polymerase into the periplasmic space. Eur J Biochem 171:541–549. https://doi.org/10.1111/j.1432-1033.1988.tb13823.x

    Article  Google Scholar 

  33. Fang J, Zou L, Zhou X, Cheng B, Fan J (2014) Synonymous rare arginine codons and tRNA abundance affect protein production and quality of TEV protease variant. PLoS One 9(11):e112254. https://doi.org/10.1371/journal.pone.0112254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jin T, Chuenchor W, Jiang J, Cheng J, Li Y, Fang K, Huang M, Smith P, Xiao TS (2017) Design of an expression system to enhance MBP-mediated crystallization. Sci Rep 7:40991. https://doi.org/10.1038/srep40991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosano GL, Ceccarelli EA (2009) Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact 8:41. https://doi.org/10.1186/1475-2859-8-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. James F, Kane SBP, King of Prussi (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coil. Curr Opin Biotechnol 6:494–500. https://doi.org/10.1016/0958-1669(95)80082-4

    Article  Google Scholar 

  37. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307(1–2):249–264. https://doi.org/10.1007/s11010-007-9603-6

    Article  CAS  PubMed  Google Scholar 

  38. Kumano T, Tomita T, Nishiyama M, Kuzuyama T (2010) Functional characterization of the promiscuous prenyltransferase responsible for furaquinocin biosynthesis: identification of a physiological polyketide substrate and its prenylated reaction products. J Biol Chem 285(51):39663–39671. https://doi.org/10.1074/jbc.M110.153957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Winkelblech J, Fan A, Li SM (2015) Prenyltransferases as key enzymes in primary and secondary metabolism. Appl Microbiol Biotechnol 99(18):7379–7397. https://doi.org/10.1007/s00253-015-6811-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key 863 Fund of China (2014AA021704), Key research and development plan of Anhui Province (1804b06020342), Natural Science Foundation of Anhui Province (1308085MA07 and 1608085QC46) and Major Projects of Science and Technology in Anhui Province (17030801036) “Development and Demonstration of Vitamin K2 Functional Food”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genhai Zhao or Zhiming Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 615 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, W., Liu, H., Wang, P. et al. Evaluation of multiple fused partners on enhancing soluble level of prenyltransferase NovQ in Escherichia coli. Bioprocess Biosyst Eng 42, 465–474 (2019). https://doi.org/10.1007/s00449-018-2050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2050-9

Keywords

Navigation