Skip to main content

Advertisement

Log in

Characterization of Amphora sp., a newly isolated diatom wild strain, potentially usable for biodiesel production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microalgae as feedstock for biofuel production have attracted serious consideration as an important sustainable source of energy. For biodiesel production with microalgae, a series of consecutive processes should be performed as selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. The aim of this study was to investigate the growth and lipid accumulation of a new isolated marine microalgal strain by optimizing culture medium composition and applying different stressful culture conditions. Microalga CTM 20023 was isolated from the evaporating salt-ponds at Sfax, Tunisia, using serial-dilution technique from enriched cultures. Phylogenetic analysis based on SSU rDNA and rbcL-3P sequences attributed this isolate to a new species of the Amphora genus. This wild strain possesses rapid gravity sedimentation of 2.91 m h−1, suitable for an easy and low-cost biomass harvest. The optimization of the composition of the culture medium through statistical experimental designs improved the specific growth rate of Amphora sp. from 0.149 to 0.262 day−1 and increased its 15-day culture biomass production from 465 to 2200 mg L−1 (dw) and its lipid content from 140 to 370 mg g−1 (dw). Highest biomass productivity of 178 mg L−1 day−1 was achieved at the 10th day of culture. Highest lipid content of 530 mg g−1 (dw) was obtained under phosphorus starvation and 64.34 % of these lipids were saturated fatty acids. A first growth stage, in optimized condition, would thus offer the maximum productivity for an algal biomass feed stream, followed by second stressful stage for lipid accumulation, thus suitable for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hossain ABMS, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Am J Biochem Biotechnol 4:250–254

    Article  CAS  Google Scholar 

  2. Brennan L, Owende P (2010) Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  3. Sakthivel R, Elumalai S, Mohommad arif M (2011) J Exp Sci 2:29–49

    Google Scholar 

  4. Sforza E, Bertucco A, Morosinotto T, Giacometti GM (2010) Chem Eng Trans 20:199–204

    Google Scholar 

  5. Cerutti H, Ma X, Msanne J, Repas T (2011) Eukaryot Cell 10:1164–1172

    Article  CAS  Google Scholar 

  6. Alcaine AA (2010) Biodiesel from Microalgae. Thesis in Chemical Engineering and Technology, Royal School of Technology. Stockholm, Sweden

  7. Scala S, Bowler C (2001) Cell Mol Life Sci 58:1666–1673

    Article  CAS  Google Scholar 

  8. Graham JM, Graham LE, Zulkifly SB, Pxeger BF, Hoover SW, Yoshitani J, Indust J (2012) Microbiol Biotechnol 39:419–428

    Article  CAS  Google Scholar 

  9. Gupta GN, Tiwari SK, Lawrence K, Lawrence RS (2011) Plant Arch 11:673–676

    Google Scholar 

  10. Sakka Hlaili A, Grami B, Hadj Mabrouk H, Gosselin M, Hamel D (2007) Mar Biol 151:767–783

    Article  Google Scholar 

  11. Yeesang C, Cheirsilp B (2011) Bioresour Technol 102:3034–3040

    Article  CAS  Google Scholar 

  12. Chtourou H, Dahmen I, Hassairi I, Abdelkafi S, Sayadi S, Dhouib A (2014) J Biobased Mater Bioenergy 8:1–8

    Article  Google Scholar 

  13. Dahmen I, Chtourou H, Jebali A, Daassi D, Karray F, Hassairi I, Sayadi S, Abdelkafi S, Dhouib A (2014) J Sci Food Agric. doi:10.1002/jsfa.6470

    Google Scholar 

  14. Provasoli L, McLaughlin JJA, Droop MR (1957) Arch für Mikrobiol 25:392–428

    Article  CAS  Google Scholar 

  15. Lefranc M, Thénot A, Lepère C, Debroas D (2005) Appl Environ Microbiol 71:5935–5942

    Article  CAS  Google Scholar 

  16. Hamsher SE, Evans KM, Mann DG, Poulíčková A, Saunders GW (2011) Protist 162:405–422

    Article  CAS  Google Scholar 

  17. Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) Gene 71:491–499

    Article  CAS  Google Scholar 

  18. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  19. Edgar RC (2004) Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  20. Tamura K, Dudley J, Nei M, Kumar S (2007) Mol Biol Evol 24(8):1596–1599

    Article  CAS  Google Scholar 

  21. Saitou N, Nei M (1987) Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  22. Felsenstein J (1985) Evolution 39:783–791

    Article  Google Scholar 

  23. AOAC: Association of Official Analytical Chemist (1984) Official methods of analysis, 14th ed. Association of Official Analytical Chemists, 14th edition, Washington DC

  24. Miller GL (1959) Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  25. Hiscox JD, Isrealstam GF (1979) Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  26. Kjeldahl J (1883) Anal Chem 22:366–382

    Article  Google Scholar 

  27. Schmid KM (2010) Lipid extraction methods and separation. Chapter 3, Methods and protocols for Arabidopsis lipid analyses In: Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina, I. Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot RJ (eds) OhlroggeAcyl-lipid metabolism. the arabidopsis Book, Number 8. Published By: The American Society of Plant Biologists URL: http://www.bioone.org/doi/full/10.1199/tab.0133. pp, 1–65

  28. Li-Beisson Y (2010) seed oil quantification. Chapter 3, Methods and protocols for Arabidopsis lipid analyses. In: Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot RJ (eds) OhlroggeAcyl-lipid metabolism. The arabidopsis book, Number 8. Published By: The American Society of Plant Biologists URL: http://www.bioone.org/doi/full/10.1199/tab.0133. pp, 1–65

  29. Matheiu D, Nony J, Phan TR (2000) Nemrodw software. LPRAI, Marseille

    Google Scholar 

  30. Evans KM, Wortley AH, Mann DG (2007) Protist 158:349–364

    Article  CAS  Google Scholar 

  31. Alverson AJ (2008) Protist 159:339–353

    Article  Google Scholar 

  32. Moniz MBJ, Kaczmarska I (2009) Mol Ecol Resour 9:65–74

    Article  CAS  Google Scholar 

  33. Beszteri B, Ács E, Makk J, Kovács G, Márialigeti K, Kiss KT (2001) Int J Syst Evol Microbiol 51:1581–1586

    CAS  Google Scholar 

  34. Theriot EC, Ashworth M, Ruck E, Nakov T, Jansen RK (2010) Plant Ecol Evol 143:278–296

    Article  Google Scholar 

  35. Ruck EC, Theriot EC (2011) Protist 162:723–737

    Article  Google Scholar 

  36. Bruder K, Medlin LK (2007) Nova Hedwigia 85:331–352

    Article  Google Scholar 

  37. Pniewski FF, Friedl T, Latala A (2011) Oceanol Hydrobiol Stud 39:3–20

    Google Scholar 

  38. Brown MR (1991) J Exp Mar Biol Ecol 145:79–99

    Article  CAS  Google Scholar 

  39. Brown MR, Jeffrey SW (1992) J Exp Mar Biol Ecol 161:91–113

    Article  CAS  Google Scholar 

  40. Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  41. Tokuşoglu Ö, Ünal MK (2003) J Food Sci 68:1144–1148

    Article  Google Scholar 

  42. Nagao N, Toda T, Takahashi K, Hamasaki K, Kikuchi T, Taguchi S (2001) J Oceanogr 57:105–107

    Article  CAS  Google Scholar 

  43. Liang Y, Mai KS, Sun SC (2000) Chin J Oceanol Limnol 18:345–349

    Article  CAS  Google Scholar 

  44. Ayadi H, Elloumi J, Guermazi W, Bouain A, Hammami M, Giraudoux P, Aleya L (2008) Acta Protozool 47:189–203

    CAS  Google Scholar 

  45. Knothe G (2006) J Am Oil Chem Soc 83:823–833

    Article  CAS  Google Scholar 

  46. Durrett TP, Benning C, Ohlrogge J (2008) Plant J 54:593

    Article  CAS  Google Scholar 

  47. Gao C, Zhai Y, Ding Y, Wu Q (2010) Appl Energy 87:756–761

    Article  CAS  Google Scholar 

  48. Varona-Cordero F, Gutiérrez-Mendieta FJ, Meave del Castillo ME (2010) J Plankton Res 32(9):1283–1299

    Article  CAS  Google Scholar 

  49. Griffiths MJ, Harrison STL (2009) J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  50. Gilstad M, Sakshaug E (1990) Mar Ecol Prog Ser 4:169–173

    Article  Google Scholar 

  51. Nguyen-Deroche TLN, Caruso A, Le TT, Bui TV, Schoefs B, Tremblin G, Morant-Manceau A (2012) Sci World J. doi:10.1100/2012/982957

    Google Scholar 

  52. Hsieh CH, Wu WT (2009) Bioresour Technol 100:3921–3926

    Article  CAS  Google Scholar 

  53. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Eukaryot Cell 9:486–501

    Article  CAS  Google Scholar 

  54. Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Bioresour Technol 102(2):1649–1655

    Article  CAS  Google Scholar 

  55. Dayananda C, Sarada R, Bhattacharya S, Ravishankar GA (2005) Process Biochem 40:3125–3131

    Article  CAS  Google Scholar 

  56. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US department of energy’s aquatic species program: biodiesel from algae. NREL/TP- 580-24190ed. In: Laboratory, N.R.E. (ed.), National Renewable Energy Laboratory. US Department of Energy 1–100

  57. Thompson GA (1996) Biochim Biophys Acta 1302:17–45

    Article  Google Scholar 

  58. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Plant J 54:621–639

    Article  CAS  Google Scholar 

  59. Feng D, Chen Z, Xue S, Zhang W (2011) Bioresour Technol 102:6710–6716

    Article  CAS  Google Scholar 

  60. Cembella AD, Antia NJ, Harrison PJ (1984) Crit Rev Microbiol 11:13–81

    Article  CAS  Google Scholar 

  61. Roy S (1988) J Exp Mar Biol Ecol 118:137–149

    Article  CAS  Google Scholar 

  62. Mandal S, Mallick N (2009) Appl Microbiol Biotechnol 84:281–291

    Article  CAS  Google Scholar 

  63. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Curr Opin Biotechnol 20:264–271

    Article  CAS  Google Scholar 

  64. Khozin-Goldberg I, Cohen Z (2006) Phytochemistry 67:696–701

    Article  CAS  Google Scholar 

  65. Narendar P (2010) Screening and Identification of Everglades Algal Isolates for Biodiesel production. FIU Electronic Theses and Dissertations. Paper 287. http://digitalcommons.fiu.edu/etd/287

  66. WCM Klein Breteler, Schogt N, Rampen S (2005) Mar Ecol Prog Ser 291:125–133

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Higher Education and Scientific Research of Tunisia under Contract Program of the Environmental Bioprocesses Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhafidh Dhouib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chtourou, H., Dahmen, I., Jebali, A. et al. Characterization of Amphora sp., a newly isolated diatom wild strain, potentially usable for biodiesel production. Bioprocess Biosyst Eng 38, 1381–1392 (2015). https://doi.org/10.1007/s00449-015-1379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1379-6

Keywords

Navigation