Skip to main content

Advertisement

Log in

Filamentous bacteria existence in aerobic granular reactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Qin L, Tay J-H, Liu Y (2004) Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem 39(5):579–584. doi:10.1016/s0032-9592(03)00125-0

    Article  CAS  Google Scholar 

  2. Tay JH, Liu QS, Liu Y (2001) Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol 91(1):168–175. doi:10.1046/j.1365-2672.2001.01374.x

    Article  CAS  Google Scholar 

  3. McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71(2):1051–1057. doi:10.1128/aem.71.2.1051-1057.2005

    Article  CAS  Google Scholar 

  4. Liu Y, Liu Q-S (2006) Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnol Adv 24(1):115–127. doi:10.1016/j.biotechadv.2005.08.001

    Article  CAS  Google Scholar 

  5. Mosquera-Corral A, de Kreuk MK, Heijnen JJ, van Loosdrecht MCM (2005) Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Res 39(12):2676–2686. doi:10.1016/j.watres.2005.04.065

    Article  CAS  Google Scholar 

  6. Zhang B, Ji M, Qiu Z, Liu H, Wang J, Li J (2011) Microbial population dynamics during sludge granulation in an anaerobic–aerobic biological phosphorus removal system. Bioresour Technol 102(3):2474–2480. doi:10.1016/j.biortech.2010.11.017

    Article  CAS  Google Scholar 

  7. Eikelboom DH (2000) Process control of activated sludge plants by microscopic investigation. IWA Publishing, London

    Google Scholar 

  8. Jenkins D, Richard MG, Daigger GT (2003) Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems. IWA Publishing, London

    Google Scholar 

  9. Nielsen H, Daims H, Lemmer H (2009) FISH handbook for biological wastewater treatment. IWA Publishing, London

    Google Scholar 

  10. Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge—a critical review. Water Res 38(4):793–817. doi:10.1016/j.watres.2003.11.005

    Article  CAS  Google Scholar 

  11. Nielsen PH, Kragelund C, Seviour RJ, Nielsen JL (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol Rev 33(6):969–998. doi:10.1111/j.1574-6976.2009.00186.x

    Article  CAS  Google Scholar 

  12. Wan C, Yang X, Lee D-J, Zhang Q, Li J, Liu X (2014) Formation of filamentous aerobic granules: role of pH and mechanism. Appl Microbiol Biotechnol 98(19):8389–8397. doi:10.1007/s00253-014-5857-6

    Article  CAS  Google Scholar 

  13. Weissbrodt DG, Lochmatter S, Ebrahimi S, Rossi P, Maillard J, Holliger C (2012) Bacterial selection during the formation of early-stage aerobic granules in wastewater treatment systems operated under wash-out dynamics. Front Microbiol 3:1–22. doi:10.3389/fmicb.2012.00332

  14. Arrojo B, Mosquera-Corral A, Garrido JM, Méndez R (2004) Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res 38(14–15):3389–3399. doi:10.1016/j.watres.2004.05.002

    Article  CAS  Google Scholar 

  15. Val del Río A, Morales N, Figueroa M, Mosquera-Corral A, Campos JL, Mendez R (2012) Effect of coagulant-flocculant reagents on aerobic granular biomass. J Chem Technol Biotechnol 87(7):908–913

    Article  Google Scholar 

  16. Figueroa M, Mosquera-Corral A, Campos JL, Mendez R (2008) Treatment of saline wastewater in SBR aerobic granular reactors. Water Sci Technol 58(2):479–485. doi:10.2166/wst.2008.406

    Article  CAS  Google Scholar 

  17. Val del Rio A, Figueroa M, Mosquera-Corral A, Campos JL, Mendez R (2013) Stability of aerobic granular biomass treating the effluent from a seafood industry. Int J Environ Res 7(2):265–276

    CAS  Google Scholar 

  18. Tijhuis L, Vanloosdrecht MCM, Heijnen JJ (1994) Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors. Biotechnol Bioeng 44(5):595–608

    Article  CAS  Google Scholar 

  19. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6):1919–1925

    CAS  Google Scholar 

  20. Loy A, Maixner F, Wagner M, Horn M (2007) probeBase—an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res 35(suppl 1):D800–D804. doi:10.1093/nar/gkl856

    Article  CAS  Google Scholar 

  21. Bjornsson L, Hugenholtz P, Tyson GW, Blackall LL (2002) Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology-Sgm 148:2309–2318

    CAS  Google Scholar 

  22. Kragelund C, Levantesi C, Borger A, Thelen K, Eikelboom D, Tandoi V, Kong Y, Van Der Waarde J, Krooneman J, Rossetti S, Thomsen TR, Nielsen PH (2007) Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol 59(3):671–682. doi:10.1111/j.1574-6941.2006.00251.x

    Article  CAS  Google Scholar 

  23. Matsumoto S, Katoku M, Saeki G, Terada A, Aoi Y, Tsuneda S, Picioreanu C, Van Loosdrecht MCM (2010) Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. Environ Microbiol 12(1):192–206. doi:10.1111/j.1462-2920.2009.02060.x

    Article  CAS  Google Scholar 

  24. Williams TM, Unz RF (1985) Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa, and Eikelboom type 021N strains. Appl Environ Microbiol 49(4):887–898

    CAS  Google Scholar 

  25. de Kreuk MK, Kishida N, Tsuneda S, van Loosdrecht MCM (2010) Behavior of polymeric substrates in an aerobic granular sludge system. Water Res 44(20):5929–5938. doi:10.1016/j.watres.2010.07.033

    Article  Google Scholar 

  26. Levantesi C, Beimfohr C, Geurkink B, Rossetti S, Thelen K, Krooneman J, Snaidr J, van der Waarde J, Tandoi V (2004) Filamentous Alphaproteobacteria associated with bulking in industrial wastewater treatment plants. Syst Appl Microbiol 27(6):716–727. doi:10.1078/0723202042369974

    Article  CAS  Google Scholar 

  27. Kragelund C, Nielsen JL, Thomsen TR, Nielsen PH (2005) Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiol Ecol 54(1):111–112. doi:10.1016/j.femsec.2005.03.002

    Article  CAS  Google Scholar 

  28. Nicolau A, Dias N, Mota M, Lima N (2001) Trends in the use of protozoa in the assessment of wastewater treatment. Res Microbiol 152(7):621–630. doi:10.1016/S0923-2508(01)01241-4

    Article  CAS  Google Scholar 

  29. Weber SD, Hofmann A, Pilhofer M, Wanner G, Agerer R, Ludwig W, Schleifer K-H, Fried J (2009) The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses. FEMS Microbiol Ecol 68(2):246–254. doi:10.1111/j.1574-6941.2009.00660.x

    Article  CAS  Google Scholar 

  30. Kappeler J, Gujer W (1994) Development of a mathematical model for “aerobic bulking”. Water Res 28(2):303–310. doi:10.1016/0043-1354(94)90268-2

    Article  CAS  Google Scholar 

  31. van der Waarde J, Krooneman J, Geurkink B, van der Werf A, Eikelboom D, Beimfohr C, Snaidr J, Levantesi C, Tandoi V (2002) Molecular monitoring of bulking sludge in industrial wastewater treatment plants. Water Sci Technol 46(1–2):551–558

    Google Scholar 

  32. Zheng Y-M, Yu H-Q, Liu S-J, Liu X-Z (2006) Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 63(10):1791–1800. doi:10.1016/j.chemosphere.2005.08.055

    Article  CAS  Google Scholar 

  33. Chudoba J, Grau P, Ottová V (1973) Control of activated-sludge filamentous bulking-II. Selection of microorganisms by means of a selector. Water Res 7(10):1389–1406. doi:10.1016/0043-1354(73)90113-9

    Article  CAS  Google Scholar 

  34. McSwain BS, Irvine RL, Wilderer PA (2004) Effect of intermittent feeding on aerobic granule structure. Water Sci Technol 49(11–12):19–25

    CAS  Google Scholar 

  35. de Kreuk MK, van Loosdrecht MCM (2004) Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci Technol 49(11–12):9–17

    Google Scholar 

  36. Spring S (2006) The genera Lepthothrix and Sphaerotilus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: ecophysiology and biochemistry. Springer, New York

    Google Scholar 

  37. Nielsen PH, De Muro MA, Nielsen JL (2000) Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ Microbiol 2(4):389–398. doi:10.1046/j.1462-2920.2000.00120.x

    Article  CAS  Google Scholar 

  38. Weber SD, Ludwig W, Schleifer K-H, Fried J (2007) Microbial composition and structure of aerobic granular sewage biofilms. Appl Environ Microbiol 73(19):6233–6240. doi:10.1128/aem.01002-07

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish Government through NOVEDAR Consolider (CSD2007-00055) and PLASTICWATER (CTQ2011-22675) projects. The authors belong to the Galician Competitive Research Group GRC 2013-032, programme co-funded by FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mosquera-Corral.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueroa, M., Val del Río, A., Campos, J.L. et al. Filamentous bacteria existence in aerobic granular reactors. Bioprocess Biosyst Eng 38, 841–851 (2015). https://doi.org/10.1007/s00449-014-1327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1327-x

Keywords