Skip to main content
Log in

Production and optimization of poly-γ-glutamic acid by Bacillus subtilis BL53 isolated from the Amazonian environment

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aims of this research were to screen and characterize a new microbial source of γ-PGA, to optimize aspects of culture conditions and medium composition using central composite design and response surface methodologies. The influence of bioreactor stirring rates on the production of γ-PGA was also investigated and the oxygen volumetric mass transfer coefficients (k La) were established. The most productive strain was identified by 16S rDNA analysis as Bacillus subtilis, and its γ-PGA production in rotatory shaker was threefold increased under optimized conditions (37 °C, pH 6.9, and 1.22 mM Zn2+), compared to conventional medium. In bioreactor, the γ-PGA production was further increased, reaching 17 g l−1, 70 % higher than shaker cultures. γ-PGA production showed high dependency on oxygen transfer. At k La of 210 h−1, the cultivation time could be reduced to 48 h, about 50 % of the time required for operations at k La 55 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shih IL, Van YT (2001) The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207–225

    Article  CAS  Google Scholar 

  2. Candela T, Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098

    Article  CAS  Google Scholar 

  3. Buescher JM, Margaritis A (2007) Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit Rev Biotechnol 27:1–19

    Article  CAS  Google Scholar 

  4. Manocha B, Margaritis A (2008) Production and characterization of gamma-polyglutamic acid nanoparticles for controlled anticancer drug release. Crit Rev Biotechnol 28:83–99

    Article  CAS  Google Scholar 

  5. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M (2005) Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec 5:352–366

    Article  CAS  Google Scholar 

  6. Taniguchi M, Kato K, Shimauchi A, Xu P, Nakayama H, Fujita KI, Tanaka T, Tarui Y, Hirasawa E (2005) Proposals for wastewater treatment by applying flocculating activity of cross-linked poly-gamma-glutamic acid. J Biosci Bioeng 99:245–251

    Article  CAS  Google Scholar 

  7. Carvajal-Zarrabal O, Nolasco-Hipólito C, Barradas-Dermitz DM, Hayward-Jones PM, Aguilar-Uscanga MG, Bujang K (2012) Treatment of vinasse from tequila production using polyglutamic acid. J Environ Manag 95:S66–S70

    Article  CAS  Google Scholar 

  8. Bajaj I, Singhal R (2011) Poly (glutamic acid)–an emerging biopolymer of commercial interest. Bioresour Technol 102:5551–5561

    Article  CAS  Google Scholar 

  9. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  Google Scholar 

  10. Oppermann-Sanio FB, Steinbuchel A (2002) Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89:11–22

    Article  Google Scholar 

  11. Ashiuchi M, Misono H (2002) Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Appl Microbiol Biotechnol 59:9–14

    Article  CAS  Google Scholar 

  12. Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MH, Soda K, Yagi T, Misono H (2001) Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence. Appl Microbiol Biotechnol 57:764–769

    Article  CAS  Google Scholar 

  13. Ashiuchi M, Shimanouchi K, Nakamura H, Kamei T, Soda K, Park C, Sung M-H, Misono H (2004) Enzymatic synthesis of high-molecular-mass poly-{gamma}-glutamate and regulation of its stereochemistry. Appl Environ Microbiol 70:4249–4255

    Article  CAS  Google Scholar 

  14. Kunioka M (2004) Biodegradable Water Absorbent Synthesized from Bacterial Poly(amino acid)s. Macromol Biosci 4:324–329

    Article  CAS  Google Scholar 

  15. Hoppensack A, Oppermann-Sanio FB, Steinbüchel A (2003) Conversion of the nitrogen content in liquid manure into biomass and polyglutamic acid by a newly isolated strain of Bacillus licheniformis. FEMS Microbiol Lett 218:39–45

    Article  CAS  Google Scholar 

  16. Mahmoud DAR (2006) Isolation of polyglutamic acid flocculant producing bacteria from extreme Egyptian environments. J Appl Sci Res 2:608–612

    Google Scholar 

  17. Soliman N, Berekaa M, Abdel-Fattah Y (2005) Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett–Burman experimental design to evaluate culture requirements. Appl Microbiol Biotechnol 69:259–267

    Article  CAS  Google Scholar 

  18. Xu H, Jiang M, Li H, Lu D, Ouyang P (2005) Efficient production of poly([gamma]-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem 40:519–523

    Article  CAS  Google Scholar 

  19. Cao M, Geng W, Liu L, Song C, Xie H, Guo W, Jin Y, Wang S (2011) Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresour Technol 102:4251–4257

    Article  CAS  Google Scholar 

  20. Zhang H, Zhu J, Zhu X, Cai J, Zhang A, Hong Y, Huang J, Huang L, Xu Z (2012) High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. Bioresour Technol

  21. Leonard CG, Housewright RD, Thorne CB (1958) Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J Bacteriol 76:499–503

    CAS  Google Scholar 

  22. Do JH, Chang HN, Lee SY (2001) Efficient recovery of gamma-poly (glutamic acid) from highly viscous culture broth. Biotechnol Bioeng 76:219–223

    Article  CAS  Google Scholar 

  23. Shih IL, Van YT, Yeh LC, Lin HG, Chang YN (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour Technol 78:267–272

    Article  CAS  Google Scholar 

  24. Shih IL, Van YT, Chang YN (2002) Application of statistical experimental methods to optimize production of poly(gamma-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb Technol 31:213–220

    Article  CAS  Google Scholar 

  25. Shih I-L, Yu Y-T (2005) Simultaneous and selective production of levan and poly(γ-glutamic acid) by Bacillus subtilis. Biotechnol Lett 27:103–106

    Article  CAS  Google Scholar 

  26. Cromwick AM, Birrer GA, Gross RA (1996) Effects of pH and aeration on gamma-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermenter cultures. Biotechnol Bioeng 50:222–227

    Article  CAS  Google Scholar 

  27. Du G, Yang G, Qu Y, Chen J, Lun S (2005) Effects of glycerol on the production of poly([gamma]-glutamic acid) by Bacillus licheniformis. Process Biochem 40:2143–2147

    Article  CAS  Google Scholar 

  28. Yoon SH, Hwan Do J, Yup Lee S, Nam Chang H (2000) Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnol Lett 22:585–588

    Article  CAS  Google Scholar 

  29. Richard A, Margaritis A (2003) Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis. Biotechnol Bioeng 82:299–305

    Article  CAS  Google Scholar 

  30. Bajaj IB, Singhal RS (2009) Enhanced production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Appl Biochem Biotechnol 159:133–141

    Article  CAS  Google Scholar 

  31. Kirschner P, Meier A, Böttger EC (1993) Genotypic identification and detection of mycobacteria: facing novel and uncultured pathogens. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington (DC)

    Google Scholar 

  32. Sneath PHA (1986) Endospore-forming gram-positive rods and cocci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  33. MacFadin JF (ed) (1980) Biochemical test for identification of medical bacteria, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  34. Zwietering MH, Jongenburger I, Rombouts FM, Vantriet K (1990) Modeling of the Bacterial-Growth Curve. Appl Environ Microbiol 56:1875–1881

    CAS  Google Scholar 

  35. Doran PM (1995) Bioprocess engineering principles. Academic Press, London

    Google Scholar 

  36. Kanno A, Takamatsu H (1995) Determination of polyglutamic acid in “Natto” using cetyltrimethylammonium bromide (Studies on “Natto” part V). Nippon Shokuhin Kagaku Kogaku Kaishi 42:878–886

    Article  CAS  Google Scholar 

  37. Ashiuchi M (2011) Analytical approaches to poly-γ-glutamate: quantification, molecular size determination, and stereochemistry investigation. J Chromatogr B 879:3096–3101

    Article  CAS  Google Scholar 

  38. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 4:e4438

    Article  CAS  Google Scholar 

  39. Xu D, Cote JC (2003) Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S-23S ITS nucleotide sequences. Int J Syst Evol Microbiol 53:695–704

    Article  CAS  Google Scholar 

  40. Sumpavapol P, Tongyonk L, Tanasupawat S, Chokesajjawatee N, Luxanani P, Visessanguan W (2010) Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand. Int J Syst Evol Microbiol 60:2364–2370

    Article  CAS  Google Scholar 

  41. Priest FG, Goodfellow M, Todd C (1988) A Numerical Classification of the Genus Bacillus. J Gen Microbiol 134:1847–1882

    CAS  Google Scholar 

  42. Reva ON, Sorokulova IB, Smirnov VV (2001) Simplified technique for identification of the aerobic spore-forming bacteria by phenotype. Int J Syst Evol Microbiol 51:1361–1371

    CAS  Google Scholar 

  43. Welker NE, Campbell LL (1967) Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J Bacteriol 94:1124–1130

    CAS  Google Scholar 

  44. Kim KM, Kim MJ, Kim DH, Park YS, Kang JS (2009) Characterization of Bacillus polyfermenticus KJS-2 as a Probiotic. J Microbiol Biotechnol 19:1013–1018

    Article  CAS  Google Scholar 

  45. Richard A, Margaritis A (2003) Optimization of cell growth and poly(glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol Lett 25:465–468

    Article  CAS  Google Scholar 

  46. Wu Q, Xu H, Ying HJ, Ouyang PK (2010) Kinetic analysis and pH-shift control strategy for poly(gamma-glutamic acid) production with Bacillus subtilis CGMCC 0833. Biochem Eng J 50:24–28

    Article  CAS  Google Scholar 

  47. Chen X, Chen S, Sun M, Yu Z (2005) High yield of poly-[gamma]-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate. Bioresour Technol 96:1872–1879

    Article  CAS  Google Scholar 

  48. Chen X, Chen S, Sun M, Yu Z (2005) Medium optimization by response surface methodology for poly-γ-glutamic acid production using dairy manure as the basis of a solid substrate. Appl Microbiol Biotechnol 69:390–396

    Article  CAS  Google Scholar 

  49. Bajaj IB, Singhal RS (2010) Effect of aeration and agitation on synthesis of poly (gamma-glutamic acid) in batch cultures of Bacillus licheniformis NCIM 2324. Biotechnol Bioprocess Eng 15:635–640

    Article  CAS  Google Scholar 

  50. García-Ochoa F, Gomez E, Santos VE, Merchuk JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307

    Article  CAS  Google Scholar 

  51. García-Ochoa F, Castro EG, Santos VE (2000) Oxygen transfer and uptake rates during xanthan gum production. Enzyme Microb Technol 27:680–690

    Article  Google Scholar 

  52. Bandaiphet C, Prasertsan P (2006) Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydr Polym 66:216–228

    Article  CAS  Google Scholar 

  53. Chun BH, Lee YK, Chung N (2012) Poly-γ-glutamic acid enhances the growth and viability of Chinese hamster ovary cells in serum-free medium. Biotechnol Lett pp 1–4

  54. García-Ochoa F, Santos VE, Casas JA, Gomez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579

    Article  Google Scholar 

  55. Casas JA, Santos VE, Garcia-Ochoa F (2000) Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme Microb Technol 26:282–291

    Article  CAS  Google Scholar 

  56. Giavasis I, Harvey LM, McNeil B (2006) The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enzyme Microb Technol 38:101–108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Záchia Ayub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, S.B., Cantarelli, V.V. & Ayub, M.A.Z. Production and optimization of poly-γ-glutamic acid by Bacillus subtilis BL53 isolated from the Amazonian environment. Bioprocess Biosyst Eng 37, 469–479 (2014). https://doi.org/10.1007/s00449-013-1016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1016-1

Keywords

Navigation