Skip to main content
Log in

A method for the reconstruction of unknown non-monotonic growth functions in the chemostat

Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

We propose an adaptive control law that allows one to identify unstable steady states of the open-loop system in the single-species chemostat model without the knowledge of the growth function. We then show how one can use this control law to trace out (reconstruct) the whole graph of the growth function. The process of tracing out the graph can be performed either continuously or step-wise. We present and compare both approaches. Even in the case of two species in competition, which is not directly accessible with our approach due to lack of controllability, feedback control improves identifiability of the non-dominant growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abed EH, Wang HO, Chen RC (1994) Stabilization of period doubling bifurcations and implications for control of chaos. Physica D 70:154–164

    Article  Google Scholar 

  2. Aborhey S, Williamson D (1978) State amd parameter estimation of microbial growth process. Automatica 14:493–498

    Article  Google Scholar 

  3. Allgower EL, Georg K (2003) Introduction to numerical continuation methods. Society for Industrial and Applied Mathematics, Boston

    Book  Google Scholar 

  4. Antonelli R, Harmand J, Steyer JP, Astolfi A (2003) Set point regulation of an anaerobic digestion process with bounded output feedback. IEEE Trans Control Syst Technol 11:495–504

    Article  Google Scholar 

  5. Astrom K, Wittenmark B (1994) Adaptive Control, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

  6. Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam

    Google Scholar 

  7. Benoît E, (1991) Dynamic bifurcations: proceedings of a conference held in Luminy, France, March 5–10, 1990, Lecture notes in mathematics, vol 1493. Springer, Berlin

  8. Baltes M, Schneider R, Sturm C, Reuss M (1994) Optimal experimental design for parameter estimation in unstructured growth models. Biotechnol Progress 10(5):480–488

    Article  CAS  Google Scholar 

  9. Boudjellaba H, Sari T (1999) Stability loss delay in harvesting competing populations. J Differ Equ 152:394–408

    Article  Google Scholar 

  10. Busvelle E, Gauthier J-P (2003) On determining unknown functions in differential systems, with an application to biological reactors. ESAIM Control Optim Calc Var 9:509–522

    Article  Google Scholar 

  11. Dochain D (2003) State and parameter estimation in chemical and biochemical processes : a survey. J Process Control 13(8):801–818

    Article  CAS  Google Scholar 

  12. Dochain D, Bastin G (1984) Adaptive identification and control algorithms for non linear bacterial growth systems. Automatica 20(5):621–634

    Article  Google Scholar 

  13. Dochain D, Bastin G (1986) On-line estimation of microbial growth rates. Automatica 22(6):705–711

    Article  Google Scholar 

  14. Dochain D, Pauss A (1988) On-line estimation of specific growth rates : an illustrative case study. Can J Chem Eng 66(4):626–631

    Article  CAS  Google Scholar 

  15. Dochain D, Perrier M (1997) Dynamical modelling, analysis, monitoring and control design for nonlinear bioprocesses. Adv Biochem Eng Biotechnol 56:147–197

    CAS  Google Scholar 

  16. Dochain D, Perrier M, Guay M (2010) Extremum seeking control and its application to process and reaction systems: a survey. Math Comput Simul 16(6):535–553

    Google Scholar 

  17. Guay M, Dochain D, Perrier M (2004) Adaptive extremum seeking control of stirred tank bioreactors. Automatica 40(5):881–888

    Article  Google Scholar 

  18. Holmberg A (1982) On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities. Math Biosci 62:23–43

    Article  Google Scholar 

  19. Holmberg A, Ranta J (1982) Procedures for parameter and state estimation of microbial growth process models. Automatica 18:181–193

    Article  Google Scholar 

  20. Insperger T (2006) Act-and-wait concept for continuous-time control systems with feedback delay. IEEE Trans Control Syst Technol 14(5):974–977

    Article  Google Scholar 

  21. Jadot F, Bastin G, Viel F (1999) Robust global stabilization of stirred tank reactors with saturated output-feedback. Eur J Control 5:361–371

    Article  Google Scholar 

  22. Kapoor N, Daoutidis P (1999) An observer-based anti-windup scheme for non-linear systems with input constraints. Int J Control 9:18–29

    Article  Google Scholar 

  23. Kovarova-Kova K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62(3):646–666

    Google Scholar 

  24. Kurtz MJ, Henson MA (1997) Input–output linearizing control of constrained nonlinear processes. J Process Control 7(1):3–17

    Article  CAS  Google Scholar 

  25. Lobry JR, Flandrois J-P (1991) Comparison of estimates of Monod’s growth model from the same data set. Binary 3:20–23

    Google Scholar 

  26. Lobry C, Rapaport A, Sari T (February 2009) Stability loss delay in the chemostat with a slowly varying washout rate. In: Proceedings of the MATHMOD international conference on mathematical modelling, Vienna (Austria)

  27. O’Malley R (1991) Singular perturbation methods for ordinary differential equations. Springer, New York

    Book  Google Scholar 

  28. Perrier M, Feyode Azevedo S, Ferreira E, Dochain D (2000) Tuning of observer-based estimators: theory and application to the on-line estimation of kinetic parameters. Control Eng Pract 8(4):377–388

    Article  Google Scholar 

  29. Posten C, Munack A (1990) On-line application of parameter estimation accuracy to biotechnical processes. In: Proceedings of the 9th American control conference (ACC), San Diego (CA), pp 2181–2186

  30. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett A 170:421–428

    Article  Google Scholar 

  31. Rapaport A, Harmand J (2002) Robust regulation of a class of partially observed nonlinear continuous bioreactors. J Process Control 12:291–302

    Article  CAS  Google Scholar 

  32. Robinson JA (1985) Determining microbial kinetic parameters using non-linear regression analysis. Adv Microb Ecol 8:61–114

    Article  Google Scholar 

  33. Reddy GP, Chidambaram M (1994) Nonlinear control of bioreactors with input multiplicities. Bioproc Eng 11:97–100

    Article  CAS  Google Scholar 

  34. Sieber J, Gonzalez-Buelga A, Neild SA, Wagg DJ, Krauskopf B (2008) Experimental continuation of periodic orbits through a fold. Phys Rev Lett 100:244101

    Article  CAS  Google Scholar 

  35. Satishkumar B, Chidambaram M (1999) Control of unstable bioractor using fuzzy-tuned PI controller. Bioproc Eng 20:127–132

    Article  CAS  Google Scholar 

  36. Schaum A, Alvarez J, Lopez-Arenas T (2012) Saturated PI control of continuous bioreactors with Haldane kinetics. Chem Eng Sci 68:520–529

    Article  CAS  Google Scholar 

  37. Sieber J, Rapaport A, Rodrigues S, Desroches M (July 2012) A new method for the reconstruction of unknown non-monotonic growth function in the chemostat. In: Proceedings of the IEEE Mediterranean conference on control and automation, Barcelona (Spain)

  38. Smith HL, Waltman P (1995) The theory of the chemostat. Cambridge University Press, Oxford

    Book  Google Scholar 

  39. Vanrollenghem P, Keesman K (1996) Identification of biodegradation models under model and data uncertainty. Water Sci Technol 33(2):91–105

    Article  Google Scholar 

  40. Veraart A, Faassen E, Dakos V, van Nes E, Lurling M, Scheffer M (2012) Recovery rates reflect distance to a tipping point in a living system. Nature 481:357–359

    Google Scholar 

  41. Versyck K, Claes J, Van Impe J (1997) Practical identification of unstructured growth kinetics by application of optimal experimental design. Biotechnol Progress 13(5):524–531

    Article  CAS  Google Scholar 

  42. Versyck K, Claes J, Van Impe J (1998) Optimal experimental design for practical identification of unstructured growth models. Math Comput Simul 46(5-6):621–629

    Article  Google Scholar 

Download references

Acknowledgments

JS’ research is supported by the EPSRC Grant EP/J010820/1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Rapaport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieber, J., Rapaport, A., Rodrigues, S. et al. A method for the reconstruction of unknown non-monotonic growth functions in the chemostat. Bioprocess Biosyst Eng 36, 1497–1507 (2013). https://doi.org/10.1007/s00449-013-0912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0912-8

Keywords

Navigation