Skip to main content
Log in

Axial dispersion in packed bed reactors involving viscoinelastic and viscoelastic non-Newtonian fluids

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Axial dispersion is an important parameter in the performance of packed bed reactors. A lot of fluids exhibit non-Newtonian behaviour but the effect of rheological parameters on axial dispersion is not available in literature. The effect of rheology on axial dispersion has been analysed for viscoinelastic and viscoelastic non-Newtonian fluids. Aqueous solutions of carboxymethyl cellulose and polyacrylamide have been chosen to represent viscoinelastic and viscoelastic liquid-phases. Axial dispersion has been measured in terms of BoL number. The single parameter axial dispersion model has been applied to analyse RTD response curve. The BoL numbers were observed to increase with increase in liquid flow rate and consistency index ‘K’ for viscoinelastic as well as viscoelastic fluids. Bodenstein correlation for Newtonian fluids proposed has been modified to account for the effect of fluid rheology. Further, Weissenberg number is introduced to quantify the effect of viscoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BoL :

\( \frac{{{\text{Pe}}_{\text{L}} \;d_{\text{S}} }}{Z} \), Bodenstein number

C(t):

Concentration at time t, g/l

C θ :

\( \frac{C}{{C_{O} }} \), Normalized concentration

D :

Axial dispersion coefficient, m2/s

d C :

Column diameter, m

d S :

Spherical volume equivalent diameter of the particle, m

de :

\( \frac{{d_{\text{S}} \varepsilon }}{{1.5\left( {1 - \varepsilon } \right) + {\raise0.7ex\hbox{${d_{\text{S}} }$} \!\mathord{\left/ {\vphantom {{d_{\text{S}} } {D_{\text{c}} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${D_{\text{c}} }$}}}} \)

K :

Flow consistency index, Pa sn

k i :

Blake-Kozeny equation constant

L :

Liquid mass velocity, kg m2−s−1

n :

Flow behaviour index

N 1 :

\( K_{1} \dot{\gamma }^{\text{m}} \), Pa

PeL :

\( \frac{{u_{\text{L}} Z}}{D} \), Peclet number

ReLM :

\( \frac{{d_{\text{S}} L}}{{(\mu_{\text{L}} \;{\text{or}}\;\mu_{\text{a}} )(1 - \varepsilon ).\alpha_{\text{w}} }} \)

v L :

Superficial velocity, m/s

Wi:

\( \lambda_{\text{eff}} .\dot{\gamma }_{\text{w}} \), Weissenberg number

Z :

Packed bed length, m

αw :

\( 1 + \frac{{2d_{\text{S}} }}{{3d_{\text{C}} (1 - \varepsilon )}} \), wall effect

\( \dot{\gamma } \) :

Shear rate (s−1)

\( \dot{\gamma }_{w} \) :

\( \frac{3n + 1}{4n}\frac{{8\;v_{\text{L}} }}{{\varepsilon \,D_{\text{e}} }}\frac{{k_{i} }}{2} \), shear rate at capillary wall, s−1

ε:

Porosity

ϕ:

Sphericity

θ:

\( \frac{t}{{t_{\text{m}} }} \), dimensionless time

λ eff :

\( \frac{{N_{1} }}{{2\dot{\gamma }\tau }} \), effective fluid characteristic time, s

λt :

Time constant of material, s

μl :

Viscosity of liquid, Pa s

μa :

\( K\dot{\gamma }^{n - 1} \), apparent viscosity of liquid phase

τ:

Shear stress, Pa

σl :

Surface tension of the liquid, mNm−1

References

  1. Bayarri S, Costell E (2011) Flow properties of carboxymethyl cellulose dairy systems with different fat content. J Food Process Eng 34:1903–1914

    Article  CAS  Google Scholar 

  2. Heydarzadeh HD, Najafpour GD, Nazari-Moghaddam AA (2009) Catalyst-free conversion of alkali cellulose to fine carboxymethyl cellulose at mild conditions. World Appl Sci J 6:564–569

    CAS  Google Scholar 

  3. Gautreau Z, Griffin J, Peterson T, Thongpradit P (2006) Characterizing viscoelastic properties of polyacrylamide gels. Bachelor of Science Thesis Worcester Polytechnic Institute, Worcester

  4. Tsung-Hua Yang (2008) Recent applications of polyacrylamide as biomaterials. Recent Pat Mater Sci 1:29–40

    Article  Google Scholar 

  5. Chhabra RP, Comiti J, Machac I (2001) Flow of non-Newtonian fluids in fixed and fluidized Beds. Chem Eng Sci 56:1–27

    Article  CAS  Google Scholar 

  6. Mammarella EJ, Regenhardt SG, Rubiolo AC (2005) Predicting the packed bed reactor performance with immobilized lactase. 2nd Mercosur Congress on Chemical Engineering 4th Mercosur Congress on Process Systems Engineering, Rio de Janeiro

  7. Wen CY, Yim J (l971) Axial dispersion of a non-Newtonian liquid in a packed bed. AIChE J 17:1503–1504

    Google Scholar 

  8. Payne LW, Parker HW (1973) Axial dispersion of non-Newtonian fluids in porous media. AIChE J 19:202–204

    Article  CAS  Google Scholar 

  9. Gupta R, Bansal A (2012) Quantifying effect of surface tension and viscosity on dispersion in packed bed reactors. Indian Chem Eng 54(3)

  10. Gupta R, Bansal A (2010) Effect of bed configuration on dispersion in a packed bed reactor. Ind Eng Chem Res 49:9525–9528

    Article  CAS  Google Scholar 

  11. Satterfield CN (1975) Trickle bed reactors. AIChE J 21:209–228

    Article  CAS  Google Scholar 

  12. Harkins WD, Brown FE (1919) The determination of surface tension (Free surface energy) and the weight of falling drops: the surface tension of water and benzene by the capillary height method. J Amer Chem Soc 41:499–524

    Article  CAS  Google Scholar 

  13. Levenspiel O, Smith WK (1957) Notes on the diffusion-type model for the longitudinal mixing of fluids in flow. Chem Eng Sci 50:1896–3891

    Google Scholar 

  14. Levenspiel O (1962) Chemical reaction engineering, 2nd edn. Wiley, New York

    Google Scholar 

  15. Hoogendooorn CJ, Lips J (1965) Axial mixing of liquid in gas-liquid flow through packed Beds. Can J Chem Eng 43:125–131

    Article  Google Scholar 

  16. Wanchoo RK, Kaur N, Bansal A, Thakur A (2007) RTD in trickle-bed reactors: experimental study. Chem Eng Commun 194:1503–1515

    Article  CAS  Google Scholar 

  17. Pant HJ, Saroha AK, Nigam KDP (2000) Measurement of liquid holdup and axial dispersion in trickle bed reactors using radiotracer technique. Nukleonika 45:235–241

    CAS  Google Scholar 

  18. Chung SF, Wen CY (1968) Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE J 14:857–866

    Article  CAS  Google Scholar 

  19. Furzer IA (1984) Axial liquid dispersion in countercurrent gas–liquid reactors near the gas flooding condition. Ind Eng Chem Fundam 23:159–164

    Article  CAS  Google Scholar 

  20. Salinas RM, Fair JR (1999) Axial mixing in modern packings gas and liquid phases: 1 Single-phase Flow. AIChE J 45:222–239

    Article  Google Scholar 

  21. Bansal A, Wanchoo RK, Sharma SK (2009) Dynamic liquid saturation in a trickle bed reactor involving Newtonian/non-Newtonian liquid phase. Ind Eng Chem Res 48:3341–3350

    Article  CAS  Google Scholar 

  22. Bansal A, Wanchoo RK, Sharma SK (2008) Two-phase pressure drop in a trickle bed reactor involving Newtonian/Non-Newtonian liquid phase. Chem Eng Commun 195:1106–1127

    Article  Google Scholar 

  23. Abdel-Khalik SI, Hassager O, Bird RB (1974) Prediction of melt elasticity from viscosity data. Polym Eng Sci 14:859–867

    Article  CAS  Google Scholar 

  24. Tiu C, James Z, Zho Q, Nicola G, Fan Tunan N, Chhabra RR (1997) Flow of viscoelastic polymer solutions in mixed beds of particles. Can J Chem Eng 75:843–850

    Article  CAS  Google Scholar 

  25. Blake FC (1922) The resistance of packing to fluid flow. Trans Am Inst Chem Engrs 14:415–421

    Google Scholar 

Download references

Acknowledgments

Personal discussions and the suggestions of Dr R K Wanchoo, Professor, University Institute of Chemical Engineering and Technology, Punjab University, Chandigarh are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Bansal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R., Bansal, A. Axial dispersion in packed bed reactors involving viscoinelastic and viscoelastic non-Newtonian fluids. Bioprocess Biosyst Eng 36, 1011–1018 (2013). https://doi.org/10.1007/s00449-012-0853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0853-7

Keywords

Navigation