Skip to main content
Log in

Monitoring bioreactors using principal component analysis: production of penicillin G acylase as a case study

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The complexity of biological processes often makes impractical the development of detailed, structured phenomenological models of the cultivation of microorganisms in bioreactors. In this context, data pre-treatment techniques are useful for bioprocess control and fault detection. Among them, principal component analysis (PCA) plays an important role. This work presents a case study of the application of this technique during real experiments, where the enzyme penicillin G acylase (PGA) was produced by Bacillus megaterium ATCC 14945. PGA hydrolyzes penicillin G to yield 6-aminopenicilanic acid (6-APA) and phenyl acetic acid. 6-APA is used to produce semi-synthetic β-lactam antibiotics. A static PCA algorithm was implemented for on-line detection of deviations from the desired process behavior. The experiments were carried out in a 2-L bioreactor. Hotteling’s T 2 was the discrimination criterion employed in this multivariable problem and the method showed a high sensibility for fault detection in all real cases that were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu Z, Weiwu Y, Huihe S (2006) Monitoring and fault diagnosis for batch process in feature extract in fisher subspace. Chin J Chem Eng 14(6):759–764

    Article  Google Scholar 

  2. Hu K, Yuan J (2008) Statistical monitoring of fed-batch process using dynamic multiway neighborhood preserving embedding. Chemom Intell Lab Syst 90:195–203

    Article  CAS  Google Scholar 

  3. Gonth S, Jenzsch M, Simutis R, Lubbert A (2008) Control of cultivation processes for recombinant protein production: a review. Bioprocess Biosyst Eng 31:21–39

    Article  Google Scholar 

  4. Lopes JA, Menezes JC (2004) Multivariate monitoring of fermentation process with non-linear modelling methods. Anal Chim Acta 515:101–108

    Article  CAS  Google Scholar 

  5. Chiang LH, Leardi R, Pell RJ, Seasholtz MB (2006) Industrial experiences with multivariate statistical analysis of batch process data. Chemom Intell Lab Syst 81:109–119

    Article  CAS  Google Scholar 

  6. Al-Alawi SM, Abdul-Wahab SA, Bakheit CS (2008) Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ Model Softw 23:396–403

    Article  Google Scholar 

  7. Pinotti LM, Silva AFS, Silva RG, Giordano RLC (2000) Study of different media for production of penicillin G acylase from Bacillus megaterium ATCC 14945. Appl Biochem Biotechnol 84–86:655–663

    Article  Google Scholar 

  8. Pinotti LM, Souza VR, Giordano RC, Giordano RLC (2007) The penicillin G acylase production by B. megaterium is amino acid consumption dependent. Biotech Bioeng 97:346–353

    Article  CAS  Google Scholar 

  9. Silva RG, Souza VR, Nucci ER, Pinotti LM, Cruz AJG, Giordano RLC, Giordano RC (2006) Using a medium of free amino acids to produce penicillin g acylase in fed-batch cultivations of Bacillus megaterium ATCC 14945. Braz J Chem Eng 23:37–43

    CAS  Google Scholar 

  10. Acevedo F, Cooney CL (1973) Penicillin amidase production by Bacillus megaterium. Biotechnol Bioeng 15:493–503

    Article  CAS  Google Scholar 

  11. Illanes A, Acevedo F, Gentina JC, Reyes I, Torres R, Cartagena O, Ruiz MA (1994) Production of penicillin acylase from Bacillus megaterium in complex and defined media. Process Biochem 29:263–270

    Article  CAS  Google Scholar 

  12. Gentina JC, Acevedo F, Villagra MP (1997) Short communication: effect of complex nitrogen sources on the production of penicillin acylase by Bacillus megaterium. W J Microbiol Biotechnol 13:127–128

    Article  CAS  Google Scholar 

  13. Yang S, Huang H, Zhang R, Huang X, Li S, Yuan Z (2001) Expression and purification of extracellular penicillin G acylase in Bacillus subtilis. Protein Expr Purif 21:60–64

    Article  Google Scholar 

  14. Souza VR, Silva ACG, Pinotti LM, Araújo HSS, Giordano RLC (2005) Characterization on the penicillin G acylase from Bacillus megaterium ATCC 14945. Braz Arch Biol Technol 48:105–111

    Google Scholar 

  15. Pinotti LM, Fonseca LP, Prazeres DMF, Rodrigues DS, Nucci ER, Giordano RLC (2009) Recovery and partial purification of penicillin G acylase from E. coli homogenate and B. megaterium culture medium using an expanded bed adsorption column. Biochem Eng J 44:111–118. doi:10.1016/j.bej.2008.11.006

    Article  CAS  Google Scholar 

  16. Albert S, Kinley RD (2001) Multivariate statistical monitoring of batch processes: an industrial case study of fermentation supervision. Trends Biotechnol 19(2):53–62

    Article  CAS  Google Scholar 

  17. Hu K, Yuan J (2009) Batch process monitoring with tensor factorization. J Process Control 19:288–296. doi:10.1016/j.jprocont.2008.03.003

    Article  CAS  Google Scholar 

  18. AlGazzawi A, Lennox B (2008) Monitoring a complex refining process using multivariate statistics. Control Eng Pract 16:294–307

    Article  Google Scholar 

  19. Tang XC, Li Y (2007) Monitoring and fault diagnosis using fisher discriminant analysis. In: Proceedings of the 6th international conference on machine learning and cybernetics, Hong Kong

  20. Takors R, Gerigk M, Paschold H, Wandrey C (2001) Principal-component analysis for microbial l-phenylalanine production. Bioprocess Biosyst Eng 24:93–99

    Article  CAS  Google Scholar 

  21. Nijhuis A, Jong S, Vandeginste BGM (1999) The application of multivariate quality control in gas chromatography. Chem Intell Lab Syst 47:107–125

    Article  CAS  Google Scholar 

  22. Nucci ER, Souza VR, Silva RG, Reis GB, Giordano RLC, Giordano RC, Cruz AJG (2009) On-line monitoring of penicillin G acylase (PGA) production using a fuzzy logic algorithm. Chem Prod Process Model 4(4):1–12. doi:10.2202/1934-2659.1313

    Google Scholar 

  23. Balasingham K (1972) The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim Biophys Acta 276:250–256

    CAS  Google Scholar 

  24. Nucci ER, Silva RG, Souza VR, Giordano RLC, Giordano RC, Cruz AJG (2007) Comparing the performance of multi layer perceptrons networks and neuro-fuzzy systems for on-line inference of Bacillus megaterium cellular concentrations. Bioprocess Biosyst Eng 30(6):429–438. doi:10.1007/s00449-007-0138-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian research-funding agencies FAPESP (State of São Paulo), CNPq and FINEP (Federal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto C. Giordano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nucci, E.R., Cruz, A.J.G. & Giordano, R.C. Monitoring bioreactors using principal component analysis: production of penicillin G acylase as a case study. Bioprocess Biosyst Eng 33, 557–564 (2010). https://doi.org/10.1007/s00449-009-0377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0377-y

Keywords

Navigation