Skip to main content

Advertisement

Log in

A model of xylitol production by the yeast Candida mogii

  • Original paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Production of xylitol from xylose in batch fermentations of Candida mogii ATCC 18364 is discussed in the presence of glucose as the cosubstrate. Various initial ratios of glucose and xylose concentrations are assessed for their impact on yield and rate of production of xylitol. Supplementation with glucose at the beginning of the fermentation increased the specific growth rate, biomass yield and volumetric productivity of xylitol compared with fermentation that used xylose as the sole carbon source. A mathematical model is developed for eventual use in predicting the product formation rate and yield. The model parameters were estimated from experimental observations, using a genetic algorithm. Batch fermentations, which were carried out with xylose alone and a mixture of xylose and glucose, were used to validate the model. The model fitted well with the experimental data of cell growth, substrate consumption and xylitol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a cell :

Specific surface area of the cell (m2 g DCW−1)

C glc :

Glucose concentration (g glucose l−1)

C x :

Biomass concentration (g DCW l−1)

C exxit :

Extracellular concentration of xylitol (g xylitol l−1)

C inxit :

Intracellular concentration of xylitol (g xylitol l cell volume−1)

C xyl :

Xylose concentration (g xylose l−1)

d mem :

Thickness of the cell membrane (m)

D mem :

Diffusion coefficient of xylitol in the lipid bilayer (m2 s−1)

HMP:

Hexose monophosphate

K i, glc :

Inhibition constant by glucose (g glucose l−1)

K i, xyl :

Inhibition constant by xylose (g xylose l−1)

K s, glc :

Saturation constant based on glucose (g glucose l−1)

K s, xit :

Saturation constant based on xylitol (g xylitol l−1)

K s, xyl :

Saturation constant based on xylose (g xylose l−1)

K par :

Partition coefficient (-)

K r :

Repression constant by glucose (g glucose l−1)

min J :

Minimum error of the objective function (-)

M :

Number of experimentally observable state variables (-)

MWxit :

Molecular weight of xylitol (g xylitol mole−1)

MWxyl :

Molecular weight of xylose (g xylose mole−1)

N :

Number of sampling points of experimental data (-)

P :

Permeability coefficient (m s−1)

P xit :

Permeability coefficient for xylitol (m s−1)

q glc :

Specific uptake rate of glucose (g glucose g DCW-1 h−1)

q maxglc :

Maximum specific uptake rate of glucose (g glucose g DCW−1 h−1)

q xit :

Specific production rate of xylitol (g xylitol g DCW−1 h−1)

q xyl :

Specific uptake rate of xylose (g xylose g DCW−1 h−1)

q maxxyl :

Maximum specific uptake rate of xylose (g xylose g DCW−1 h−1)

Q xit :

Volumetric production rate of xylitol (g xylitol l−1 h−1)

Q xyl :

Volumetric uptake rate of xylose (g xylose l−1 h−1)

r f,xit :

Specific rate of formation of xylitol (g xylitol g DCW−1 h−1)

r u,xit :

Consumption rate of intracellular xylitol (g xylitol g DCW−1 h−1)

r t,xit :

Mass flux of xylitol based on dry cell weight (g xylitol g DCW−1 h−1)

t :

Cultivation time (h)

W i :

Weighting coefficient (-)

y ij :

Experimental value of variable (-)

\( \ifmmode\expandafter\hat\else\expandafter\^\fi{y}_{ij} \) :

Model predicted value of variable (-)

Y x/xit :

Biomass yield on xylitol (g DCW g xylitol−1)

Y x/(xyl+glc) :

Biomass yield on xylose and glucose (g DCW g sugar−1)

Y xit/xyl :

Xylitol yield on xylose (g xylitol g xylose−1)

μ:

Specific growth rate (h−1)

μ maxglc :

Maximum specific growth rate on glucose (h−1)

μ maxxit :

Maximum specific growth rate on xylitol (h−1)

ρ x :

Mass density of cells (g DCW l cell−1 volume)

η:

Energy yield coefficient for biomass production (-)

ξp :

Energy yield coefficient for product formation (-)

σcell :

Weight fraction of carbon in biomass (g atom-C g DCW−1)

σxit :

Weight fraction of carbon in xylitol (g atom-C g xylitol−1)

γcell :

Reductance degree of biomass (-)

γxit :

Reductance degree of xylitol (-)

References

  1. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of D-xylose to xylitol. J Ferment Bioeng 86:1–14

    Article  CAS  Google Scholar 

  2. Kim JH, Ryu YW, Seo JH (1999) Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis. J Ind Microbiol Biotechnol 22:181–186

    Article  CAS  Google Scholar 

  3. Oh DK, Kim SY (1998) Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol 50:419–425

    Article  PubMed  CAS  Google Scholar 

  4. Tavares JM, Duarte LC, Amaral-Collaço MT, Gírio FM (2000) The influence of hexoses addition on the fermentation of D-xylose in Debaryomyces hansenii under continuous cultivation. Enzyme Microb Technol 26:743–747

    Article  PubMed  CAS  Google Scholar 

  5. Kilian SG, van Uden N (1988) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548

    CAS  Google Scholar 

  6. Lee H, Sopher CR, Yau KYF (1996) Induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars in Candida guilliermondii. J Chem Technol Biotechnol 66:375–379

    Article  Google Scholar 

  7. Rosa SMA, Felipe MGA, Silva SS, Vitolo M (1998) Xylose reductase production by Candida guilliermondii. Appl Biochem Biotechnol 70/72:127–135

    Google Scholar 

  8. Aguiar Jr WB, Faria LFF, Couto MAPG, Araujo OQF, Pereira N Jr (2002) Growth model and prediction of oxygen transfer rate for xylitol production from D-xylose by C. guilliermondii. Biochem Eng J 12:49–59

    Article  CAS  Google Scholar 

  9. Aranda-Barradas JS, Delia ML, Riba JP (2000) Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioprocess Eng 22:219–225

    Article  CAS  Google Scholar 

  10. Sirisansaneeyakul S, Staniszewski S, Rizzi M (1995) Screening of yeasts for production of xylitol form D-xylose. J Ferment Bioeng 80:565–570

    Article  CAS  Google Scholar 

  11. Mayerhoff ZDVL, Roberto IC, Silva SS (1998) Production of xylitol by Candida mogii from rice straw hydrolysate. Appl Biochem Biotechnol 70/72:149–159

    Article  Google Scholar 

  12. Baishan F, Hongwen C, Xiaolan X, Ning W, Zongding H (2003) Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimization. Process Biochem 38:979–985

    Article  CAS  Google Scholar 

  13. Grootjen DRJ, van der Lans RGJM, Luyben KCAM (1991) Conversion of glucose/xylose mixtures by Pichia stipitis under oxygen-limited conditions. Enzyme Microb Technol 13:648–654

    Article  CAS  Google Scholar 

  14. Nakamura Y, Sawada T, Inoue E (2001) Mathematical model for ethanol production from mixed sugars by Pichia stipitis. J Chem Technol Biotechnol 76:586–592

    Article  CAS  Google Scholar 

  15. Bisswanger H (2002) Enzyme kinetics: principles and methods. Wiley-VCH, Weinheim

    Book  Google Scholar 

  16. Ligthelm ME, Prior BA, du Preez JC, Brandt V (1988) An investigation of D-{1−13C} xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 28:293–296

    CAS  Google Scholar 

  17. Walker GM (1998) Yeast physiology and biotechnology. Wiley, Chichester

    Google Scholar 

  18. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, San Diego

    Google Scholar 

  19. Deschatelets L, Yu EKC (1986) A simple pentose assay for biomass conversion studies. Appl Microbiol Biotechnol 24:379–397

    Article  CAS  Google Scholar 

  20. Adler L, Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of the yeast Debaromyces hansenii. Arch Microbiol 124:123–130

    Article  CAS  Google Scholar 

  21. Houck CR, Joines JA, Kay MG (1995) A genetic algorithm for function optimization: a matlab implementation. Technical Report NCSU-IE Technical Report 95–09, North Carolina State University

  22. Lee H (1992) Reversible inactivation of D-xylose utilization by D-glucose in the pentose-fermenting yeast Pachysolen tannophilus. FEMS Microbiol Lett 92:1–4

    Article  CAS  Google Scholar 

  23. Jeppsson H, Holmgren K, Hahn-Hägerdal B (1999) Oxygen-dependent xylitol metabolism in Pichia stipitis. Appl Microbiol Biotechnol 53:92–97

    Article  CAS  Google Scholar 

  24. Leathers TD, Gupta SC (1997) Xylitol and riboflavin accumulation in xylose-grown cultures of Pichia guilliermondii. Appl Microbiol Biotechnol 47:58–61

    Article  CAS  Google Scholar 

  25. Barbosa MFS, de Medeiros MB, Mancilha IM, Schneider H, Lee H (1988) Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251

    Article  CAS  Google Scholar 

  26. Sirisansaneeyakul S (1993) Reaktionstechnische Untersuchungen zur mikrobiellen Produktion von Xylit. PhD Thesis, Universitaet Stuttgart, Stuttgart

  27. Kocková-Kratochvílová A (1990) Yeasts and yeast-like organisms. VCH, New York

    Google Scholar 

  28. Voleskey B, Votruba J (1992) Modeling and optimization of fermentation processes. Elsevier, Amsterdam

    Google Scholar 

  29. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier, Amsterdam

    Google Scholar 

  30. Lucas C, van Uden N (1986) Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23:491–495

    Article  CAS  Google Scholar 

  31. Nobre A, Lucas C, Leăo C (1999) Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 65:3594–3598

    PubMed  CAS  Google Scholar 

  32. Rogers HJ, Perkins HR (1969) Cell walls and membranes. Spon, London

    Google Scholar 

  33. Jain MK (1972) The biomolecular lipid membrane. Litton, New York

    Google Scholar 

Download references

Acknowledgement

This research was supported by the Commission on Higher Education, Ministry of Education, Royal Thai Government, under the Agro-industry PhD Program Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarote Sirisansaneeyakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tochampa, W., Sirisansaneeyakul, S., Vanichsriratana, W. et al. A model of xylitol production by the yeast Candida mogii . Bioprocess Biosyst Eng 28, 175–183 (2005). https://doi.org/10.1007/s00449-005-0025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-005-0025-0

Keywords

Navigation