Skip to main content
Log in

Characterisation of operation conditions and online monitoring of physiological culture parameters in shaken 24-well microtiter plates

  • Original paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A new online monitoring technique to measure the physiological parameters, dissolved oxygen (DO) and pH of microbial cultures in continuously shaken 24-well microtiter plates (MTP) is introduced. The new technology is based on immobilised fluorophores at the bottom of standard 24-well MTPs. The sensor MTP is installed in a sensor dish reader, which can be fixed on an orbital shaker. This approach allows real online measurements of physiological parameters during continuous shaking of cultures without interrupting mixing and mass transfer like currently available technologies do. The oxygen transfer conditions at one constant shaking frequency (250 1/min) and diameter (25 mm) was examined with the chemical sulphite oxidation method. Varied filling volumes (600–1,200 μL) of Escherichia coli cultures demonstrated the importance of sufficient oxygen transfer to the culture. Cultures with higher filling volumes were subjected to an oxygen limitation, which influenced the cell metabolism and prolongated the cultivation time. The effects could be clearly monitored by online DO and pH measurements. A further study of different media in an E. coli fermentation elucidated the different growth behaviour in response to the medium composition. The MTP fermentations correlated very well with parallel fermentations in shake flasks. The new technique gives valuable new insights into biological processes at a very small scale, thus enabling parallel experimentation and shorter development times in bioprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lye GJ, Dalby PA, Woodley JM (2002) Better biocatalytic processes faster: New tools for the implementation of biocatalysis in organic synthesis. Org Process Res Dev 6: 434–440

    Article  CAS  Google Scholar 

  2. Boettner M, Prinz B, Holz C, Stahl U, Lang C (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 99: 51–62

    Article  PubMed  CAS  Google Scholar 

  3. Kumar S, Wittmann C, Heinzle E (2004) Minibioreactors. Biotechnol Lett 26: 1–10

    Article  PubMed  CAS  Google Scholar 

  4. Hermann R, Walther N, Maier U, Büchs J (2001) Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation. Biotechnol Bioeng 74: 355–363

    Article  PubMed  CAS  Google Scholar 

  5. Hermann R, Lehmann M, Büchs J (2003) Characterization of gas-liquid mass transfer phenomena in microtiter plates. Biotechnol Bioeng 81: 178–186

    Article  PubMed  CAS  Google Scholar 

  6. Weiss S, John GT, Klimant I, Heinzle E (2002) Modeling of mixing in 96-well microplates observed with fluorescence indicators. Biotechnol Progr 18: 821–830

    Article  CAS  Google Scholar 

  7. John GT, Klimant I, Wittmann C, Heinzle E (2003) Integrated optical sensing of dissolved oxygen in microtiter plates: A novel tool for microbial cultivation. Biotechnol Bioeng 81: 829–836

    Article  PubMed  CAS  Google Scholar 

  8. Bambot SB, Holavanahali R, Lakowicz JR, Carter GM, Rao G (1994) Phase fluorometric sterilizable optical oxygen sensor. Biotechnol Bioeng 43: 1139–1145

    Article  CAS  Google Scholar 

  9. Huber C, Klimant I, Krause C, Werner T, Mayr T, Wolfbeis OS (2000) Optical sensor for seawater salinity. Fresen J Anal Chem 368: 196–202

    Article  CAS  Google Scholar 

  10. Holst G, Kohls O, Klimant I, Konig B, Kuhl M, Richter T (1998) A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples. Sensor Actuat B-Chem 51: 163–170

    Article  Google Scholar 

  11. Hartmann P, Ziegler W, Holst G, Lubbers DW (1997) Oxygen flux fluorescence lifetime imaging. Sensor Actuat B-Chem 38: 110–115

    Article  Google Scholar 

  12. Kosch U, Klimant I, Werner T, Wolfbeis OS (1998) Strategies to design pH optodes with luminescence decay times in the microsecond time regime. Anal Chem 70: 3892–3897

    Article  CAS  Google Scholar 

  13. John GT, Goelling D, Klimant I, Schneider H, Heinzle E (2003) PH-sensing 96-well microtitre plates for the characterization of acid production by dairy starter cultures. J Dairy Res 70: 327–333

    Article  PubMed  CAS  Google Scholar 

  14. Linek V, Benes P, Vacek V (1989) Dynamic pressure method for kLa measurement in large-scale bioreactors. Biotechnol Bioeng 33: 1406–1412

    Article  CAS  Google Scholar 

  15. Weisenberger S, Schumpe A (1996) Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. Aiche J 42: 298–300

    Article  CAS  Google Scholar 

  16. Akita K (1981) Diffusivities of gases in aqueous-electrolyte solutions. Ind Eng Chem Fund 20: 89–94

    Article  CAS  Google Scholar 

  17. Kensy F, Zimmermann HF, Knabben I, Anderlei T, Trauthwein H, Dingerdissen U, Büchs J (2005) Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. Biotechnol Bioeng 89: 698–708

    Article  PubMed  CAS  Google Scholar 

  18. Duetz WA, Witholt B (2001) Effectiveness of orbital shaking for the aeration of suspended bacterial cultures in square-deepwell microtiter plates. Biochem Eng J 7: 113–115

    Article  PubMed  CAS  Google Scholar 

  19. Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas-liquid mass transfer in shaking flasks. Biochem Eng J 17: 155–168

    Article  CAS  Google Scholar 

  20. Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73: 95–103

    Article  PubMed  CAS  Google Scholar 

  21. Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7: 157–162

    Article  PubMed  CAS  Google Scholar 

  22. Anderlei T, Zang W, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17: 187–194

    Article  CAS  Google Scholar 

  23. Losen M, Fröhlich B, Pohl M, Büchs J (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Progr 20: 1062–1068

    Article  CAS  Google Scholar 

  24. Alfoldi L, Rasko II (1970) L-serine deaminating enzymes in Escherichia coli crude extracts. FEBS Lett 6: 73–76

    Article  PubMed  CAS  Google Scholar 

  25. Robbins JW, Taylor KB (1989) Optimization of Escherichia coli growth by controlled addition of glucose. Biotechnol Bioeng 34: 1289–1294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Büchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kensy, F., John, G.T., Hofmann, B. et al. Characterisation of operation conditions and online monitoring of physiological culture parameters in shaken 24-well microtiter plates. Bioprocess Biosyst Eng 28, 75–81 (2005). https://doi.org/10.1007/s00449-005-0010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-005-0010-7

Keywords

Navigation