Skip to main content

Advertisement

Log in

Spatial and phylogenetic structure of Alpine stonefly assemblages across seven habitats using DNA-species

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Stream ecosystems are spatially heterogeneous, with many different habitat patches distributed within a small area. The influence of this heterogeneity on the biodiversity of benthic insect communities is well documented; however, studies of the role of habitat heterogeneity in species coexistence and assembly remain limited. Here, we investigated how habitat heterogeneity influences spatial structure (beta biodiversity) and phylogenetic structure (evolutionary processes) of benthic stonefly (Plecoptera, Insecta) communities. We sampled 20 sites along two Alpine rivers, including seven habitats in four different reaches (headwaters, meandering, bar-braided floodplain, and lowland spring-fed). We identified 21 morphological species and delineated 52 DNA-species based on sequences from mitochondrial cox1 and nuclear ITS markers. Using DNA-species, we first analysed the patterns of variation in richness, diversity, and assemblage composition by quantifing the contribution of each reach and habitat to the overall DNA-species diversity using an additive partition analysis and distance-based redundancy analysis. Using gene-tree phylogenies, we assessed whether environmental filtering could lead to the co-occurrence of DNA-species using a two-step analysis to detect a phylogenetic signal. All four reaches significantly contributed to DNA-species richness, with the meandering reach having the highest contribution. Habitats had an effect on DNA-species diversity, where glide, riffle and, pool influenced the spatial structure of stonefly assemblage possibly due to the high habitat heterogeneity. Among the habitats, the pool showed significant phylogenetic clustering, suggesting high levels of evolutionary adaptation and strong habitat filtering. This assemblage structure may be caused by long-term stability of the habitat and the similar requirements for co-occurring species. Our study shows the importance of different habitats for the spatial and phylogenetic structure of stonefly assemblage and sheds light on the habitat-specific diversity that may help improve conservation practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All sequencing data reported in this study have been deposited into GenBank (COI, MT482808—MT483088; ITS, MT504421—MT504536). The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Aizen MA, Gleiser G, Sabatino M, Gilarranz LJ, Bascompte J, Verdu M (2015) The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation. Ecol Lett 19:29–36

    Article  PubMed  Google Scholar 

  • Ajawatanawong P, Atkinson GC, Watson-Haigh NS, MacKenzie B, Baldauf SL (2012) SeqFIRE: a web application for automated extraction of indel regions and conserved blocks from protein multiple sequence alignments. Nucleic Acids Res 40:340–347

    Article  Google Scholar 

  • Arscott DB, Tockner K, Ward JV (2005) Lateral organization of aquatic invertebrates along the corridor of a braided floodplain river. J N Amer Benthol Soc 24:934–954

    Article  Google Scholar 

  • Astorga A, Death R, Death F, Paavola R, Chakraborty M, Muotka T (2014) Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecol Evol 4:2693–2702

    Article  PubMed  PubMed Central  Google Scholar 

  • Baselga A, Orme CDL (2012) Betapart: and R package for the study of beta diversity. Methods Ecol Evol 3:808–812

    Article  Google Scholar 

  • Baselga A, Fujisawa T, Crampton-Platt A, Bergsten J, Foster PG, Monaghan MT, Vogler AP (2013) Whole-community DNA barcoding reveals a spatio-temporal continuum of biodiversity at species and genetics levels. Nat Commun 4(10):1038

    Google Scholar 

  • Batista DF, Buss DF, Dorville LFM, Nessimian JL (2001) Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Mace river basin, Rio de Janeiro, Brazil. Res Bras Biol 6:249–258

    Article  Google Scholar 

  • Benda L, Poff NL, Miller D, Dunne T, Reeves G, Pess G, Pollock M (2004) The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54:413–427

    Article  Google Scholar 

  • Benke AC, Parsons KA, Dhar SM (1991) Population and community patterns of invertebrate drift in an unregulated coastal plain river. Can J Fish Aquat 48:811–823

    Article  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Bojková J, Rádková V, Soldán T, Zahrádková S (2014) Trends in species diversity of lotic stoneflies (Plecoptera) in the Czech Republic over five decades. Insect Conserv Divers 7:252–262

    Article  Google Scholar 

  • Bottova K, Derka T, Beracko P, Tierno de Figueroa JM (2013) Life cycle, feeding and secondary production of Plecopera community in a constant temperature stream in Central Europe. Limnologica 43:27–33

    Article  Google Scholar 

  • Boumans L, Hogner S, Brittain J, Johnsen A (2017) Ecological speciation by temporal isolation in a population of the stonefly Leuctra hippopus (Plecoptera, Leuctridae). Ecol Evol 7:1635–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Brasil LS, Da Silva NF, Batista JD, Olivera B, Ramos HS (2017) Aquatic insects in organic and inorganic hábitats in the streams on the Central Brazilian savanna. Rev Colomb Entomol 43:286–291

    Article  Google Scholar 

  • Buchwalter DB, Jenkins JJ, Curtis LR (2002) Respiratory strategy is a major determinant of [3H]water and [14C]chlorpyrifos uptake in aquatic insects. Can J Fish Aquat Sci 59:1315–1322

    Article  CAS  Google Scholar 

  • Buffington JM, Lisle TE, Woodsmith RD, Hilton S (2002) Controls on the size and occurrence of pools in coarse-grained forest rivers. River Res Appl 18:507–531

    Article  Google Scholar 

  • Calow PP, Petts GE (1996) The rivers handbook: hydrological and ecological principles. Blackwell Science LTD, Victoria

  • Cardillo M, Gittleman JL, Purvis A (2008) Global patterns in the phylogenetic structure of island mammal assemblages. Proc R Soc B: Biol Sci 275:1549–1556

    Article  Google Scholar 

  • Cavender-Bares J, Wilczek A (2003) Integrating micro and macroevolutionary processes in community ecology. Ecology 84:592–597

    Article  Google Scholar 

  • Consiglio C (1980) Plecoptteri. Consiglio Nazionale delle Ricerche AQ/1/77, Verona, Italy

  • de Vienne DM, Giraud T, Martin OC (2007) A congruence index for testing topological similarity between trees. Bioinformatics 23:3119–3124

    Article  PubMed  Google Scholar 

  • Dias-Silva K, Cabetter HSR, Juen L, De Marco JR, P (2010) The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zoologia 27:918–930

    Article  Google Scholar 

  • Dinnage R (2009) Disturbance alters the phylogenetic composition and tructure of plant communities in an old field system. PLoS One 4:e7071

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobson M, Frid C (1998) Ecology of aquatic systems. Longman, Harlow

    Google Scholar 

  • Doering M, Uehlinger U, Tockner K (2013) Vertical hydrological exchange, and ecosystem properties and processes at two spatial scales along a floodplain river (Tagliamento, Italy). Freshw Sci 32:12–25

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban GF, Finlay BJ (2010) Conservation work is incomplete without cryptic biodiversity. Nature 463:293

    Article  CAS  PubMed  Google Scholar 

  • Ezard T, Fujisawa T, Barraclough T (2014) Splits: SPecies lImits. R package version 2.3 http://R-Forge.R-project.org/projects/splits/

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Finn DS, Poff NL (2011) Examining spatial concordance of genetic and species diversity patterns to evaluate the role of dispersal limitation in structuring headwater metacommunities. J N Am Benthol Soc 30:273–283

    Article  Google Scholar 

  • Finn DS, Theobald DM, Black WC, Poff NL (2006) Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol Ecol 15:3553–3566

    Article  CAS  PubMed  Google Scholar 

  • Finn DS, Bonada N, Múrria C, Hughes JM (2011) Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J N Am Benthol Soc 30:963–980

    Article  Google Scholar 

  • Finn DS, Zamora-Muñoz C, Múrria C, Sáinz-Bariáin M, Alba-Tercedor J (2013) Evidence from recently deglaciated mountain ranges that Baetis alpinus (Ephemeroptera) could lose significant genetic diversity as alpine glaciers disappear. Freshw Sci 33:207–2016

    Article  Google Scholar 

  • Fochetti R, Tierno de Figueroa JM (2008) Plecoptera. Fauna D’ Italia, Calderini, Italy

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–297

    CAS  PubMed  Google Scholar 

  • Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol 62:707–724

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamboa M (2020) Hemocyanin and Hexamerins expression in response to hypoxia in stoneflies (Plecoptera, Insecta). Arch Insect Biochem Physiol 105:e21743

    Article  CAS  PubMed  Google Scholar 

  • Gamboa M, Monaghan MT (2015) Association of adult female and male stoneflies (Plecoptera) from an Alpine river using wing morphometrics and mitochondrial DNA. Aquat Insects 36:1–8

    Article  Google Scholar 

  • Gamboa M, Watanabe K (2019) Genome-wide signatures of local adaptation among seven stoneflies species along nationwide latitudinal gradient in japan. BMC Genomics 20:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia X-F, Schnauder I, Push MT (2012) Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers. Hydrobiologia 685:49–68

    Article  Google Scholar 

  • Genung MA, Schweitzer JA, Úbeda F, Fitzpatrick BM, Pregitzer CC, Felker-Quinn E, Bailey JK (2011) Genetic variation and community change-selection, evolution, and feedbacks. Funct Ecol 25:408–419

    Article  Google Scholar 

  • Gering JC, Crist TO, Veech JA (2003) Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conserv Biol 17:488–499

    Article  Google Scholar 

  • Gill BA, Harrington RA, Kondratieff BC, Zamudio KR, Poff NL, Funk WC (2013) Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams. Freshw Sci 33:288–301

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) PhyML: A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hauer FR, Lamberti GA (1996) Methods in stream ecology. Elsevier Science, California

    Google Scholar 

  • Heino J, Melo AS, Siquiera T, Soininen J, Valanko S, Bini LM (2015) Metacommunity organization, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Fresw Biol 60:845–869

    Article  Google Scholar 

  • Herrera-Vasquez J (2008) Community structure of aquatic insects in the Esparza River, Costa Rica. Rev Biol Trop 57:133–139

    Google Scholar 

  • Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59:573–583

    Article  Google Scholar 

  • Ishida Y, Abekura K, Takemon Y (2005) Habitat characteristics of Rhinogobius sp. or “Shimahiregata” in Shirokita wando. Ecol Civ Eng 8:1–14

    Article  Google Scholar 

  • Jackson JK, Battle JM, White BP, Pilgrim EM, Stein ED, Miller PE, Sweeney BW (2013) Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications. Freshw Sci 33:312–324

    Article  Google Scholar 

  • Karaus U, Larsen S, Guillong H, Tockner K (2013) The contribution of lateral aquatic habitats to insect diversity along river corridors in the Alps. Landsc Ecol 28:1755–1767

    Article  Google Scholar 

  • Karney CFF (2013) Algorithms for geodesics. J Geod 87: 43-55

    Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Kondratieff BC, DeWalt RE, Verdone CJ (2019) Plecoptera of Canada. In: Langor DW, Sheffield CS (eds) The biota of Canada—a biodiversity assessment. Part 1: the terrestrial arthropods. Zookeys 819: 243–254.

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48:1161–1172

    Article  Google Scholar 

  • Lancaster J, Downes BJ (2013) Aquatic entomology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:5–13

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Leprieur F, Albouy C, De Bortoli J, Cowman PF, Bellwood DR, Mouillot D (2012) Quantifying phylogenetic beta diversity: distinguishing between “true” turnover of lineages and phylogenetic diversity gradients. PLoS ONE 7:e42760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSp v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lososova Z, Smarda P, Chytry M, Purschke O, Pysek P, Sadlo L, Tichy L, Winter M (2015) Phylogenetic structure of plant species pools reflects habitats age on the geological time scale. J Veg Sci 24:820–833

    Google Scholar 

  • Lu H-P, Wagner HH, Chen X-Y (2007) A contribution diversity approach to evaluate species diversity. Basic Appl Ecol 8:1–12

    Article  CAS  Google Scholar 

  • Macneale KH, Peckarsky BL, Likens GE (2005) Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshw Biol 50:1117–1130

    Article  Google Scholar 

  • Marten A, Brandle M, Brandl R (2006) Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol Ecol 15:2643–2651

    Article  CAS  PubMed  Google Scholar 

  • Mayfield MM, Levine JM (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett 13:1085–1093

    Article  PubMed  Google Scholar 

  • McLain DK, Wesson DM, Oliver JH, Collins FH (1995) Variation in ribosomal DNA internal transcribed spacers 1 among eastern populations of Ixodes scapularis (Acari: Ixodidae). J Med Entomol 32:353–360

    Article  CAS  PubMed  Google Scholar 

  • Misof B, Shanlin L, Meusemann K, Peters RS, Donath A, Mayer C et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    Article  CAS  PubMed  Google Scholar 

  • Murria C, Bonada N, Arnedo MA, Prat N, Vogler AP (2013) Higher β-and γ-diversity at species and genetic levels in headwaters than in mid-order streams in Hydropsyche (Trichoptera). Freshw Biol 58:2226–2236

    CAS  Google Scholar 

  • Mykra H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob Ecol Biogeogr 16:149–159

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin RB, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2012) Vegan. Community Ecology R Package. http://CRAN.R-project/package-vegan

  • Pastuchova Z, Lehotsky M, Greeskova A (2008) Influence of morphohydraulic habitat structure on invertebrate communities (Ephemeroptera, Plecoptera and Trichoptera). Biologia 63:720–729

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Prenda J, Gallardo-Mayenco A (1999) Distribution patterns, species assemblages and habitat selection of the stoneflies (Plecoptera) from two Mediterranean river basins in South Spain. Int Rev Hydrobiol 84:595–608

    Google Scholar 

  • R Core Team (2014). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Revell LJ (2012) Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Ribera I, Vogler AP (2008) Habitat type as a determinant of species range sizes: the example of lotic-lentic differences in aquatic Coleoptera. Biol J Linn Soc 71:33–52

    Google Scholar 

  • Rolls RJ, Leigh C, Sheldon F (2012) Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshw Sci 31:1163–1186

    Article  Google Scholar 

  • Saito VS, Soininen J, Fonseca-Gessner AA, Siquiera T (2015a) Dispersal traits drive the phylogenetic distance decay of similarity in neotropical stream metacommunities. J Biogeogr 42:2101–2111

    Article  Google Scholar 

  • Saito VS, Siquiera T, Fonseca-Gessner AA (2015b) Should phylogenetic and functional diversity metrics compose macroinvertebrate multimetric indices for stream biomonitoring? Hydrobiologia 745:167–179

    Article  Google Scholar 

  • Saito VS, Cianciaruso MV, Siqueira T, Fonseca-Gessner AA, Povoine S (2016) Phylogenies and traits provide distinct insights about the historical and contemporary assembly of aquatic insects communities. Ecol Evol 6:2925–2937

    Article  PubMed  PubMed Central  Google Scholar 

  • Sargent RD, Ackerly DD (2008) Plant-pollinator interactions and the assembly of plant communities. Trends Ecol Evol 23:123–130

    Article  PubMed  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Singh MP, Smith SM, Harrison AD (2008) Emergence patterns of the stoneflies (Plecoptera) from a wooded stream in southern Ontario. Aquat Insects 6:233–243

    Article  Google Scholar 

  • Sobral FL, Cianciaruso MV (2016) Functional and phylogenetic structure of forest and savanna bird assemblages across spatial scales. Ecography 39:533–541

    Article  Google Scholar 

  • Stewart KW, Szczytko SW (1983) Drift of Ephemeroptera and Plecoptera in two Colorado rivers. Freshw Invertebr Biol 2:117–131

    Article  Google Scholar 

  • Thompson R, Townsend C (2006) A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. J Anim Ecol 75:476–484

    Article  PubMed  Google Scholar 

  • Tiziano B, Fenoglio S, Lopez-Rodriguez MJ, Tierno de Figueroa JM, Grenna M, Cucco M (2010) Do predators condition the distribution of prey within micro habitats? An experiment with stoneflies (Plecoptera). J Rev Hydrobiol 95:285–295

    Article  Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330

    Article  Google Scholar 

  • Tockner K, Ward JV, Arscott DB, Edwards PJ, Kollmann J, Gurnell AM, Petts GE, Maiolini B (2013) The Tagliamento River: a model ecosystem of European importance. Aquat Sci 65:239–253

    Article  Google Scholar 

  • Veech JK, Crist TO (2010) Toward a unified view of diversity partitioning. Ecology 91:1988–1992

    Article  PubMed  Google Scholar 

  • Violle C, Nemergut DR, Pu Z, Jiang L (2011) Phylogenetic limiting similarity and competitive exclusion. Ecol Lett 14:782–787

    Article  PubMed  Google Scholar 

  • Viteck S, Vincon G, Graf W, Pauls SU (2017) High cryptic diversity in aquatic insects: an integrative approach to study the enigmatic Leuctra inermis species group (Plecoptera). Arthropod Syst Phylogeny 75:497–521

    Google Scholar 

  • Ward JV, Tockner K, Edwards PJ, Kollmann J, Bretschko G, Gurnell AM, Petts GE, Rossaro B (1999) A reference system for the Alps: the ‘Fiume Tagliamento.’ River Res Appl 15:63–75

    Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies JT, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Xiu J, Chen Y, Zhang L, Chai Y, Wang M, Guo Y, Li T, Yue M (2017) Using phylogeny and functional traits for assessing community assembly along environmental gradients: a deterministic process driven by elevation. Ecol Evol 7:5056–5069

    Article  Google Scholar 

  • Young MK, Smith RJ, Pilgrim KL, Fairchlid MP, Schwartz MK (2019) Integrative taxonomy refutes a species hypothesis: the asymmetric hybrid origin of Arsapnia arapahoe (Plecoptera, Capniidae). Ecol Evol 9:1364–1377

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowldedgements

We thank Paul Schmidt-Yáñez for his assistance in the field, and Micanaldo Francisco for his assistance with the figures.

Funding

MG was supported by the German Academic Exchange Service (DAAD) fellowship (A/09/94531) and the Japan Society of the Promotion of Science Postdoctoral Fellowship (PU17908). KW was supported by a European Union Marie-Curie International Incoming Fellowship (PIIF-GA-2009–237026). MTM was partially supported by a Japan Society for the Promotion of Science (JSPS) Fellowship (L-15543). This research was supported by the JSPS (Grant Numbers: 24254003, 17H01666), the Sumitomo Electric Industries Group Corporate Social Responsibility Foundation, the German Academic Exchange Service (DAAD, Programm Projektbezogener Personenaustausch Japan, project 57402018) and the Research Unit Program of Ehime University.

Author information

Authors and Affiliations

Authors

Contributions

MG develop the key ideas, methodology, conducted filedwork, analyses, and wrote the manuscript. JS conducted the multivariate dispersion analysis. YT assisted in the fieldwork, and funded the research. MTM formulated ideas, assisted in the fieldwork, funded the research, and helped draft the manuscript. KW formulated ideas, assisted in the fieldwork, funded the research, and helped draft the manuscript.

Corresponding author

Correspondence to Maribet Gamboa.

Ethics declarations

Conflict of interest

There are no conflict of interest to disclose.

Ethics approval

Ethics approval was not required for this study according the local legislation. All applicable institutional and/or national guidelines for the care and use of the animals were followed.

Consent to participate

No applicable.

Consect for publication

No applicable.

Additional information

Communicated by Bryan Brown.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Supplementary file2 (JPG 1235 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamboa, M., Serrana, J., Takemon, Y. et al. Spatial and phylogenetic structure of Alpine stonefly assemblages across seven habitats using DNA-species. Oecologia 201, 513–524 (2023). https://doi.org/10.1007/s00442-023-05321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-023-05321-0

Keywords

Navigation