Skip to main content
Log in

Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development

  • Plant-microbe-animal interactions – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

It is increasingly recognized that gut microbiota have a major effect on the physiology, biology, ecology and evolution of their animal hosts. Because in social insects, the gut microbiota is acquired through the diet and by contact with nest provisions, it can be hypothesized that regular supplementation of microorganisms to the diet will have an impact on the fitness of the consumer and on the development of the whole colony. To test this hypothesis, we investigated how supplementation of bacteria, yeasts, and combinations of the two to either pollen or nectar affected colony development in the social bumblebee Bombus terrestris. Three yeasts and three bacterial species that live at the flower-insect interface were used in the experiments and the development of bumblebee colonies was monitored over a period of 10 weeks. The results showed that administration of microbes via pollen had a stronger positive impact on colony development than when provided via sugar water. Supplementation of bacteria led, in general, to a faster egg laying, higher brood size and increased production of workers during the first weeks, whereas yeasts or a combination of yeasts and bacteria had less impact on colony development. However, the results differed between microbial species, with Wickerhamiella bombiphila and Rosenbergiella nectarea showing the strongest increase in colony development. Torulaspora delbrueckii induced early male production, which is likely a fitness cost. We conclude that the tested bacteria-yeast consortia did not result in better colony development than the interacting species alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alford DV (1969) A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in southern England. J Animal Ecol 149–170

  • Alimadadi N, Soudi MR, Wang S-A et al (2016) Starmerella orientalis fa, sp. nov., an ascomycetous yeast species isolated from flowers. Int J Syst Evol Microbiol 66:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Altmann SA (1998) Foraging for survival: yearling baboons in Africa. University of Chicago Press

  • Álvarez-Pérez S, Lievens B, Jacquemyn H, Herrera CM (2013) Acinetobacter nectaris sp. nov. and Acinetobacter boissieri sp. nov., two novel bacterial species isolated from floral nectar of wild Mediterranean insect-pollinated plants. Int J Syst Evol Microbiol 63:1532–1539

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez S, Lievens B, Fukami T (2019) Yeast–bacterium interactions: the next frontier in nectar research. Trends Plant Sci 24:393–401

    Article  PubMed  Google Scholar 

  • Ambika Manirajan B, Ratering S, Rusch V et al (2016) Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ Microbiol 18:5161–5174

    Article  PubMed  Google Scholar 

  • Anderson KE, Carroll MJ, Sheehan TIM et al (2014) Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 23:5904–5917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MT (2012) The contributing role of the intestinal microbiota in stressor-induced increases in susceptibility to enteric infection and systemic immunomodulation. Horm Behav 62:286–294

    Article  CAS  PubMed  Google Scholar 

  • Bauer E, Williams BA, Smidt H et al (2006) Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr Issues Intest Microbiol 7:35–52

    CAS  PubMed  Google Scholar 

  • Bosmans L, Pozo MI, Verreth C et al (2018a) Habitat-specific variation in gut microbial communities and pathogen prevalence in bumblebee queens (Bombus terrestris). PLoS ONE 13:e0204612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosmans L, Pozo MI, Verreth C et al (2018b) Hibernation leads to altered gut communities in bumblebee queens (Bombus terrestris). Insects 9:188

    Article  PubMed Central  Google Scholar 

  • Brown JMK (2005) EDGAR II, experimental design generator and randomiser. http://www.edgarweb.org.uk

  • Brysch-Herzberg M, Lachance M-A (2004) Candida bombiphila sp. nov., a new asexual yeast species in the Wickerhamiella clade. Int J Syst Evol Microbiol 54:1857–1859

    Article  CAS  PubMed  Google Scholar 

  • Chevtchik V (1950) Mikrobiologie pyloveho kvaseni. Publ Fac Sci Univ Masaryk 323:103–130

    Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  CAS  PubMed  Google Scholar 

  • David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559

    Article  CAS  PubMed  Google Scholar 

  • Dharampal PS, Carlson C, Currie CR, Steffan SA (2019) Pollen-borne microbes shape bee fitness. Proc R Soc Lond B Biol Sci 286:20182894

    CAS  Google Scholar 

  • Duchateau MJ, Velthuis HHW (1988) Development and reproductive strategies in Bombus terrestris colonies. Behaviour 107:186–207

    Article  Google Scholar 

  • Dunbar RIM (1980) Demographic and life history variables of a population of gelada baboons (Theropithecus gelada). J Anim Ecol 49:485–506

    Article  Google Scholar 

  • Dutta B, Gitaitis R, Agarwal G et al (2018) Pseudomonas coronafaciens sp. nov., a new phytobacterial species diverse from Pseudomonas syringae. PLoS ONE 13:e0208271

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 109:11002–11007

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Kwong WK, McFrederick Q et al (2016) The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7:e02164-e2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fall D, Holley J (2016) Comparison of microbial diversity in local wasps and plant surfaces. J Undergrad Res 15:93–103

    Google Scholar 

  • Ganter PF (2006) Yeast and invertebrate associations. In: Biodiversity and ecophysiology of yeasts. Springer, pp 303–370

  • Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. Bergey’s manual of systematic bacteriology, New York

    Google Scholar 

  • Gilliam M (1979a) Microbiology of pollen and bee bread: the genus Bacillus. Apidologie 10:269–274

    Article  Google Scholar 

  • Gilliam M (1979b) Microbiology of pollen and bee bread: the yeasts. Apidologie 10:43–53

    Article  Google Scholar 

  • Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett 155:1–10

    Article  CAS  Google Scholar 

  • Gogarten JF, Brown LM, Chapman CA et al (2012) Seasonal mortality patterns in non-human primates: implications for variation in selection pressures across environments. Evolution 66:3252–3266

    Article  PubMed  PubMed Central  Google Scholar 

  • Good AP, Gauthier M-PL, Vannette RL, Fukami T (2014) Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut. PLoS ONE 9:e86494

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulson D (2009) Bumblebees: behaviour, ecology, and conservation, 2nd edn. Oxford University Press, USA, Oxford, New York

    Google Scholar 

  • Graystock P, Rehan SM, McFrederick QS (2017) Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv Genet 18:701–711

    Article  Google Scholar 

  • Hamdi C, Balloi A, Essanaa J et al (2011) Gut microbiome dysbiosis and honeybee health. J Appl Entomol 135:524–533

    Article  Google Scholar 

  • Hamilton WJ (1985) Demographic consequences of a food and water shortage to desert chacma baboons, Papio ursinus. Int J Primatol 6:451–462

    Article  Google Scholar 

  • Hammer TJ, Sanders JG, Fierer N (2019) Not all animals need a microbiome. FEMS Microbiol Lett 366:fnz117

    Article  CAS  PubMed  Google Scholar 

  • Hatoum R, Labrie S, Fliss I (2013) Identification and partial characterization of antilisterial compounds produced by dairy yeasts. Probiotics & Antimicro Prot 5:8–17

    Article  CAS  Google Scholar 

  • Heinrich B (1974) Thermoregulation in endothermic insects. Science 185:747–756

    Article  CAS  PubMed  Google Scholar 

  • Herbert EW Jr, Shimanuki H (1978) Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie 9:33–40

    Article  Google Scholar 

  • Herrera CM, Pozo MI (2010) Nectar yeasts warm the flowers of a winter-blooming plant. Proc R Soc B Biol Sci 277:1827–1834

    Article  Google Scholar 

  • Herrera CM, Pozo MI, Medrano M (2013) Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity. Ecology 94:273–279

    Article  PubMed  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice Nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini-Abari A, Emtiazi G, Jazini, et al (2019) LC/MS detection of oligogalacturonic acids obtained from tragacanth degradation by pectinase producing bacteria. J Basic Microbiol 59:249–255

    Article  CAS  PubMed  Google Scholar 

  • Huffnagle GB, Noverr MC (2013) The emerging world of the fungal microbiome. Trends Microbiol 21:334–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume ID, Warner ACI (1980) Evolution of microbial digestion in mammals. In: Rucklebusch Y, Thivend Y (eds) Digestive physiology and metabolism in ruminants. Lancaster, MTP Press, pp 665–684

    Chapter  Google Scholar 

  • Junker RR, Tholl D (2013) Volatile organic compound mediated interactions at the plant-microbe interface. J Chem Ecol 39:810–825

    Article  CAS  PubMed  Google Scholar 

  • Junker RR, Romeike T, Keller A, Langen D (2014) Density-dependent negative responses by bumblebees to bacteria isolated from flowers. Apidologie 45:467–477

    Article  CAS  Google Scholar 

  • Kieliszek M, Piwowarek K, Kot AM et al (2018) Pollen and bee bread as new health-oriented products: a review. Trends Food Sci Technol 71:170–180

    Article  CAS  Google Scholar 

  • Kim PS, Shin NR, Kim JY et al (2014) Acinetobacter apis sp. nov., isolated from the intestinal tract of a honey bee Apis mellifera. J Microbiol 52:639–645

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka TK, Nieh JC (2009) Bumble bee pollen foraging regulation: role of pollen quality, storage levels, and odor. Behav Ecol Sociobiol 63:501–510

    Article  Google Scholar 

  • Koch H, Schmid-Hempel P (2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA 108:19288–19292

    Article  CAS  PubMed  Google Scholar 

  • König H (2006) Intestinal microorganisms of termites and other invertebrates. Springer Science & Business Media

  • Koskinioti P, Ras E, Augustinos AA et al (2019) The effects of geographic origin and antibiotic treatment on the gut symbiotic communities of Bactrocera oleae populations. Entomol Exp Appl 167:197–208

    Article  CAS  Google Scholar 

  • Kurtzman C, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study. Elsevier

  • Lee W-J, Hase K (2014) Gut microbiota–generated metabolites in animal health and disease. Nat Chem Biol 10:416–424

    Article  CAS  PubMed  Google Scholar 

  • Lee FJ, Miller KI, McKinlay JB, Newton IL (2018) Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol Ecol 94:f113

    Article  Google Scholar 

  • Lenaerts M, Álvarez-Pérez S, de Vega C et al (2014) Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Syst Appl Microbiol 37:402–411

    Article  CAS  PubMed  Google Scholar 

  • Lenaerts M, Goelen T, Paulussen C et al (2017) Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Funct Ecol 31:2061–2069

    Article  Google Scholar 

  • Lenth R, Hervé M (2016) Least-squares means. R package version 2.22. Book Least-Squares Means R package version 2

  • Lievens B, Hallsworth JE, Pozo MI et al (2015) Microbiology of sugar-rich environments: diversity, ecology and system constraints. Environ Microbiol 17:278–298

    Article  CAS  PubMed  Google Scholar 

  • Lochhead AG, Heron DA (1929) Microbiological studies of honey. I Honey fermentation and its cause II Infection by sugar-tolerant yeasts. Can Dep Agric Bull 116:1–47

    Google Scholar 

  • Macevicz S, Oster G (1976) Modeling social insect populations II: optimal reproductive strategies in annual eusocial insect colonies. Behav Ecol Sociobiol 1:265–282

    Article  Google Scholar 

  • Mendes R, Raaijmakers JM (2015) Cross-kingdom similarities in microbiome functions. ISME J 9:1905–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menezes C, Vollet-Neto A, Contrera FA, et al (2013) The role of useful microorganisms to stingless bees and stingless beekeeping. In: Pot-Honey. Springer, New York, pp. 153–171

  • Nelson KE (2015) An update on the status of current research on the mammalian microbiome. ILAR J 56:163–168

    Article  CAS  PubMed  Google Scholar 

  • Oster GF, Wilson EO (1979) Caste and ecology in the social insects. Princeton University Press

  • Parre E, Geitmann A (2005) Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220:582–592

    Article  CAS  PubMed  Google Scholar 

  • Pattemore DE, Goodwin RM, McBrydie HM et al (2014) Evidence of the role of honey bees (Apis mellifera) as vectors of the bacterial plant pathogen Pseudomonas syringae. Australas Plant Path 43:571–575

    Article  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E (2009) Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 9:1132–1147

    Article  PubMed  Google Scholar 

  • Peng YS, Nasr ME, Marston JM et al (1984) Digestion of torula yeast, Candida utilis, by the adult honeybee, Apis mellifera. Ann Entomol Soc Am 77:627–632

    Article  Google Scholar 

  • Plowright RC, Laverty TM (1984) The ecology and sociobiology of bumble bees. Annu Rev Entomol 29:175–199

    Article  Google Scholar 

  • Pozo MI, Herrera CM, Bazaga P (2011) Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 61:82–91

    Article  PubMed  Google Scholar 

  • Pozo MI, Lachance M-A, Herrera CM (2012) Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microbiol Ecol 80:281–293

    Article  CAS  PubMed  Google Scholar 

  • Pozo MI, Lievens B, Jacquemyn H (2014) Impact of microorganisms on nectar chemistry, pollinator attraction and plant fitness. In: Peck RL (ed) Nectar: production, chemical composition and benefits to animals and plants. Nova Science Publishers, Inc, New York, pp 1–41

    Google Scholar 

  • Pozo MI, Herrera CM, Lachance M-A et al (2016) Species coexistence in simple microbial communities: unravelling the phenotypic landscape of co-occurring Metschnikowia species in floral nectar. Environ Microbiol 18:1850–1862

    Article  CAS  PubMed  Google Scholar 

  • Pozo MI, Bartlewicz J, Van Oystaeyen A et al (2018) Surviving in the absence of flowers: do nectar yeasts rely on overwintering bumblebee queens to complete their annual life cycle? FEMS Microbiol Ecol 94:fiy196

    CAS  Google Scholar 

  • Pozo MI, Van Kemenade G, Van Oystaeyen A et al (2020) The impact of yeast presence in nectar on bumble bee behavior and fitness. Ecol Monogr 90:e01393

    Article  Google Scholar 

  • Praet J, Parmentier A, Schmid-Hempel R et al (2018) Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ Microbiol 20:214–227

    Article  CAS  PubMed  Google Scholar 

  • Ptaszyńska AA, Borsuk G, Mułenko W, Wilk J (2016) Impact of vertebrate probiotics on honeybee yeast microbiota and on the course of nosemosis. Med Weter 72:430–434

    Google Scholar 

  • Ravenscraft A, Berry M, Hammer T et al (2019) Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol Monogr 89:e01346

    Article  Google Scholar 

  • Rering CC, Beck JJ, Hall GW et al (2018) Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol 220:750–759

    Article  CAS  PubMed  Google Scholar 

  • Rothman JA, Andrikopoulos C, Cox-Foster D, McFrederick QS (2019) Floral and foliar source affect the bee nest microbial community. Microb Ecol 78:506–516

    Article  PubMed  Google Scholar 

  • Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. In: Dafni A, Hesse M, Pacini E (eds) Pollen and pollination. Springer, Vienna

    Google Scholar 

  • Samuni-Blank M, Izhaki I, Laviad S et al (2014) The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar. PLoS ONE 9:e99107

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaeffer RN, Mei YZ, Andicoechea J et al (2017) Consequences of a nectar yeast for pollinator preference and performance. Funct Ecol 31:613–621

    Article  Google Scholar 

  • Schwiertz A (2016) Microbiota of the human body: implications in health and disease. Springer Berlin Heidelberg, New York

    Book  Google Scholar 

  • Selber-Hnatiw S, Rukundo B, Ahmadi M et al (2017) Human gut microbiota: toward an ecology of disease. Front Microbiol 8:1265

    Article  PubMed  PubMed Central  Google Scholar 

  • Shihata AM, Mrak EM (1952) Intestinal yeast floras of successive populations of Drosophila. Evolution 6:325–332

    Article  Google Scholar 

  • Snowdon JA, Cliver DO (1996) Microorganisms in honey. Int J Food Microbiol 31:1–26

    Article  CAS  PubMed  Google Scholar 

  • Srinatha HS, Jalali SK, Sriram S, Chakravarthy AK (2015) Isolation of microbes associated with field-collected populations of the egg parasitoid, Trichogramma chilonis capable of enhancing biotic fitness. Biocontrol Sci Techn 25:789–802

    Article  Google Scholar 

  • Stefanini I (2018) Yeast-insect associations: it takes guts. Yeast 35:315–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffan SA, Dharampal PS, Danforth BN et al (2019) Omnivory in bees: elevated trophic positions among all major bee families. Am Nat 194:414–421

    Article  PubMed  Google Scholar 

  • Tauber JP, Nguyen V, Lopez D, Evans JD (2019) Effects of a resident yeast from the honeybee gut on immunity, microbiota, and Nosema disease. Insects 10:296

    Article  PubMed Central  Google Scholar 

  • Team RC (2018) R: a language and environment for statistical computing; 2015

  • Tucker CM, Fukami T (2014) Environmental variability counteracts priority effects to facilitate species coexistence: evidence from nectar microbes. Proc R Soc B Biol Sci 281:20132637

    Article  Google Scholar 

  • Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14-6ra14

    Article  PubMed  PubMed Central  Google Scholar 

  • Vander Wall SB (1990) Food hoarding in animals. University of Chicago Press

  • Vannette RL, Fukami T (2018) Contrasting effects of yeasts and bacteria on floral nectar traits. Ann Bot 121:1343–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannette RL, Gauthier M-PL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc R Soc B Biol Sci 280:20122601

    Article  Google Scholar 

  • Vásquez A, Forsgren E, Fries I et al (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE 7:e33188

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega FE, Blackwell M (2005) Insect-fungal associations: ecology and evolution. Oxford University Press

  • Voulgari-Kokota A, Grimmer G, Steffan-Dewenter I, Keller A (2019a) Bacterial community structure and succession in nests of two megachilid bee genera. FEMS Microbiol Ecol 95:fiy218

    Article  CAS  Google Scholar 

  • Voulgari-Kokota A, Ankenbrand MJ, Grimmer G et al (2019b) Linking pollen foraging of megachilid bees to their nest bacterial microbiota. Ecol Evol 9:10788–10800

    Article  PubMed  PubMed Central  Google Scholar 

  • Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A (2019c) Drivers, diversity, and functions of the solitary-bee microbiota. Trends Microbiol 27:1034–1044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Fonds voor Wetenschappelijk Onderzoek (FWO) for providing funding for this research via application 12A0716N. We thank colleagues working at the bumblebee production of Biobest in Westerlo, Belgium. Special thanks to Stef Rutten and Alfredo Benavente for providing help during the most intense periods of work of this research. Two reviewers provided useful comments that significantly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MIP, FW and HJ conceived and designed the experiments. TM and GVK performed the experiments. MIP analyzed the data. MIP wrote the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to María I. Pozo.

Additional information

Communicated by Ingolf Steffan-Dewenter.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozo, M.I., Mariën, T., van Kemenade, G. et al. Effects of pollen and nectar inoculation by yeasts, bacteria or both on bumblebee colony development. Oecologia 195, 689–703 (2021). https://doi.org/10.1007/s00442-021-04872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-021-04872-4

Keywords

Navigation