Skip to main content
Log in

Lifetime variation in feather corticosterone levels in a long-lived raptor

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

In long-lived animals, the challenges that threaten individual homeostasis, and the way they are dealt with, are expected to vary in an age-related manner, encompassing the progressive selection of superior phenotypes and the acquisition and improvement of key skills (e.g. foraging, breeding and fighting abilities). Since exposure to homeostatic challenges typically elevates circulating glucocorticoid (GC) levels in vertebrates (modulating the behavioural and physiological responses that mediate allostasis), we may expect concomitant age-related changes in these hormones. Here, we investigated whether the level of corticosterone (the main avian GC) deposited in feathers during regular moult reflected the expected lifelong progression of energetic challenges in a long-lived raptor, the black kite (Milvus migrans). Feather corticosterone values were highest in the youngest birds, gradually declined to reach minimum levels in prime age, 7- to 11-year-old birds, and then increased again slightly among the oldest, senescent birds (≥12 years old). This pattern mirrored the age-related changes in reproductive success and survival rates previously reported for this population, suggesting that feather corticosterone levels captured the most vulnerable and challenging periods experienced by these birds as they proceeded through life. Moreover, feather corticosterone levels were negatively related to body size, suggesting that larger birds either experienced fewer homeostatic challenges, or were better able to cope with them. Feather corticosterone measures thus provided a valuable snapshot of how allostatic loads vary along the life of individuals, supporting the idea of a tight, long-term link between cumulative physiological responses to ecological challenges and demographic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angelier F, Shaffer SA, Weimerskirch H, Chastel O (2006) Effect of age, breeding experience and senescence on corticosterone and prolactin levels in a long-lived seabird: the wandering albatross. Gen Comp Endocrinol 149:1–9

    Article  CAS  PubMed  Google Scholar 

  • Angelier F, Moe B, Weimerskirch H, Chastel O (2007a) Age-specific reproductive success in a long-lived bird: do older parents resist stress better? J Anim Ecol 76:1181–1191

    Article  PubMed  Google Scholar 

  • Angelier F, Shaffer SA, Weimerskirch H, Trouvé C, Chastel O (2007b) Corticosterone and foraging behaviour in a pelagic seabird. Physiol Biochem Zool 80:283–292

    Article  CAS  PubMed  Google Scholar 

  • Angelier F, Weimerskirch H, Dano S, Chastel O (2007c) Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behav Ecol Sociobiol 61:611–621

    Article  Google Scholar 

  • Angelier F, Clément-Chastel C, Welcker J, Gabrielsen W, Chastel O (2009) How does corticosterone affect parental behaviour and reproductive success? A study of prolactin in black-legged kittiwakes. Funct Ecol 23:784–793

    Article  Google Scholar 

  • Astheimer LB, Buttemer WA, Wingfield JC (1992) Interactions of corticosterone with feeding, activity and metabolism in passerine birds. Ornis Scand 23:355–365

    Article  Google Scholar 

  • Baker K (1993) Identification guide to European non-passerines: BTO guide 24. British Thrust for Ornithology, Thetford

    Google Scholar 

  • Batuman OA, Sajewski D, Ottenweller JE, Pitman DL, Natelson BH (1990) Effects of repeated stress on T cell numbers and function in rats. Brain Behav Immun 4:105–117

    Article  CAS  PubMed  Google Scholar 

  • Beerling W, Koolhaas JM, Ahnaou A, Bouwknecht JA, de Boer SF, Meerlo P, Drinkenburg WHIM (2011) Physiological and hormonal responses to novelty exposure in rats are mainly related to ongoing behavioral activity. Physiol Behav 103:412–420

    Article  CAS  PubMed  Google Scholar 

  • Blas J (2015) Stress in birds. In: Scanes CG (ed) Sturkie´s Avian Physiology, 6th edn. Academic Press, London, pp 769–810

    Chapter  Google Scholar 

  • Blas J, Bortolotti GR, Tella JL, Baos R, Marchant TA (2007) Stress response during development predicts fitness in a wild, long lived vertebrate. Proc Nat Acad Sci USA 104:8880–8884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blas J, Sergio F, Hiraldo F (2009) Age-related improvement in reproductive performance in a long-lived raptor: a cross-sectional and longitudinal study. Ecography 32:647–657

    Article  Google Scholar 

  • Blas J, Sergio F, Wingfield JC, Hiraldo F (2011) Experimental tests of endocrine function in breeding and nonbreeding raptors. Physiol Biochem Zool 84:406–416

    Article  PubMed  Google Scholar 

  • Blas J, Cabezas S, Figuerola J, López L, Tanferna A, Hiraldo F, Sergio F, Negro JJ (2013) Carotenoids and skin coloration in a social raptor. J Raptor Res 47:174–184

    Article  Google Scholar 

  • Bortolotti GR (2010) Flaws and pitfalls in the chemical analysis of feathers: bad news-good news for avian chemoecology and toxicology. Ecol Appl 20:1766–1774

    Article  PubMed  Google Scholar 

  • Bortolotti GR, Marchant TA, Blas J, German T (2008) Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Funct Ecol 22:494–500

    Article  Google Scholar 

  • Bortolotti GR, Marchant T, Blas J, Cabezas S (2009) Tracking stress: localisation, deposition and stability of corticosterone in feathers. J Exp Biol 212:1477–1482

    Article  CAS  PubMed  Google Scholar 

  • Bourgeon S, Raclot T (2006) Corticosterone selectively decreases humoral immunity in female eiders during incubation. J Exp Biol 209:4957–4965

    Article  CAS  PubMed  Google Scholar 

  • Bourgeon S, Leat EH, Magnusdóttir E, Furness RW, Strøm H, Petersen A, Geir W, Gabrielsen GW, Hanssen SA, Bustnes JO (2014) Feather corticosterone levels on wintering grounds have no carry-over effects on breeding among three populations of Great skuas (Stercorarius skua). PLoS One 9:e100439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Breuner CW, Greenberg AL, Wingfield JC (1998) Noninvasive corticosterone treatment rapidly increases activity in Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Gen Comp Endocrinol 111:386–394

    Article  CAS  PubMed  Google Scholar 

  • Brown CR, Brown MB (2000) Weather-mediated natural selection on arrival time in cliff swallows (Petrochelidon pyrrhonota). Behav Ecol Sociobiol 47:339–345

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Cabezas S, Blas J, Marchant TA, Moreno S (2007) Physiological stress levels predict survival probabilities in wild rabbits. Horm Behav 51:313–320

    Article  CAS  PubMed  Google Scholar 

  • Caro J, Ontiveros D, Pizarro M, Pleguezuelos JM (2011) Habitat features of settlement areas used by floaters of Bonelli’s and Golden Eagles. Bird Conserv Int 21:59–71

    Article  Google Scholar 

  • Caswell H (2000) Matrix population models: construction, analysis and interpretation, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Catry P, Phullips RA, Phalan B, Croxall JP (2006) Senescence effects in an extremely long-lived bird: the grey-headed albatross Thalassarche chrysostoma. P Roy Soc B Bio 273:1625–1630

    Article  Google Scholar 

  • Challet E, Le Maho Y, Robin JP, Malan A (1995) Involvement of corticosterone in the fasting-induced rise in protein utilization and locomotor activity. Pharmacol Biochem Behav 50:405–412

    Article  CAS  PubMed  Google Scholar 

  • Cox RM, Parker EU, Cheney DM, Liebl AL, Martin LB, Calsbeek R (2010) Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Func Ecol 24:1262–1269

    Article  Google Scholar 

  • Cramp S, Simmons KEL (1980) The birds of the western palearctic, vol 2. Oxford University Press, Oxford

    Google Scholar 

  • Crossin GT, Phillips RA, Lattin CR, Romero LM, Williams TD (2013) Corticosterone mediated costs of reproduction link current to future breeding. Gen Comp Endocrinol 193:112–120

    Article  CAS  PubMed  Google Scholar 

  • Cyr NE, Romero LM (2007) Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen Comp Endocrinol 151:82–89

    Article  CAS  PubMed  Google Scholar 

  • Dawson RD, Bortolotti GR (2000) Reproductive success of American kestrels: the role of prey abundance and weather. The Condor 102:814–822

    Article  Google Scholar 

  • Desrochers A (1992) Age and foraging success in European blackbirds: variation between and with individuals. Anim Behav 43:885–894

    Article  Google Scholar 

  • DesRochers DW, Reed JM, Awerman J, Kluge JA, Wilkinson J, van Griethuijsen LI, Aman J, Romero LM (2009) Exogenous and endogenous corticosterone alter feather quality. Comp Biochem Physiol A 152:46–52

    Article  CAS  Google Scholar 

  • Dhabhar FS, McEwen BS, Spencer RL (1997) Adaptation to prolonged or repeated stress–comparison between rat strains showing intrinsic differences in reactivity to acute stress. Neuroendocrinology 65:360–368

    Article  CAS  PubMed  Google Scholar 

  • Ellegren H (1996) First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc R Soc Lond B 263:1635–1641

    Article  CAS  Google Scholar 

  • Essington TE, Quinn TP, Ewert VE (2000) Intra-and inter-specific competition and the reproductive success of sympatric Pacific salmon. Can J Fish Aquat Sci 57:205–213

    Article  Google Scholar 

  • Fairhurst GD, Marchant TA, Soos C, Machin KL, Clark RG (2013) Experimental relationships between levels of corticosterone in plasma and feathers in a free-living bird. J Exp Biol 216:4071–4081

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M (1993) Juvenile dispersal behaviour and natal philopatry of a long-lived raptor, the Spanish Imperial Eagle Aquila adalberti. Ibis 135:132–138

    Article  Google Scholar 

  • Fontella FU, Siqueira IR, Vasconcellos APS, Tabajara AS, Netto CA, Dalmaz C (2005) Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res 30:105–111

    Article  CAS  PubMed  Google Scholar 

  • Grissom N, Bhatnagar S (2009) Habituation to repeated stress: get used to it. Neurobiol Learn Mem 92:215–224

    Article  PubMed  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  CAS  PubMed  Google Scholar 

  • Harms NJ, Legagneux P, Gilchrist HG, Bêty J, Love OP, Forbes MR, Bortolotti GR, Soos C (2015) Feather corticosterone reveals effect of moulting conditions in the autumn on subsequent reproductive output and survival in an Arctic migratory bird. Proc R Soc Lond B 282:20142085

  • Hawfield EJ (1986) The number of fault bars in the feathers of Red-tailed Hawks, Red-shouldered Hawks, Broad-winged Hawks, and Barred Owls. Chat 50:15–18

    Google Scholar 

  • Hector JAL, Harvey S (1986) Corticosterone secretion through long incubation shifts in Diomedea albatrosses. Gen Comp Endocrinol 62:349–352

    Article  CAS  PubMed  Google Scholar 

  • Heidinger BJ, Nisbet IC, Ketterson ED (2006) Older parents are less responsive to a stressor in a long-lived seabird: a mechanism for increased reproductive performance with age? P Roy Soc B Bio 273:2227–2231

    Article  Google Scholar 

  • Heidinger BJ, Nisbet ICT, Ketterson ED (2008) Changes in adrenal capacity contribute to a decline in the stress response with age in a long-lived seabird. Gen Comp Endocrinol 156:564–568

    Article  CAS  PubMed  Google Scholar 

  • Jansen AMY (1990) Acquisition of foraging skills by Heron Island Silvereyes Zosterops lateralis chlorocephala. Ibis 132:95–101

    Article  Google Scholar 

  • Jenni-Eiermann S, Helfenstein F, Vallat A, Glauser G, Jenni L (2015) Corticosterone: effects on feather quality and deposition into feathers. Methods Ecol Evol 6:237–246

    Article  Google Scholar 

  • Jessop TS, Hamann M (2005) Interplay between age class, sex and stress response in green turtles (Chelonia mydas). Aust J Zool 53:131–136

    Article  Google Scholar 

  • Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238

    Article  CAS  PubMed  Google Scholar 

  • Kitaysky AS, Wingfield JC, Piatt JF (1999) Dynamics of food availability, body condition and physiological stress response in breeding Black-legged kittiwakes. Funct Ecol 13:577–584

    Article  Google Scholar 

  • Kitaysky AS, Wingfield JC, Piatt JF (2001) Corticosterone facilitates begging and affects resource allocation in the black-legged kittiwake. Behav Ecol 12:619–625

    Article  Google Scholar 

  • Kitaysky AS, Kitaiskaia EV, Piatt JF, Wingfield JC (2003) Benefits and costs of increased levels of corticosterone in seabird chicks. Horm Behav 43:140–149

    Article  CAS  PubMed  Google Scholar 

  • Kitaysky AS, Piatt JF, Wingfield JC (2007) Stress hormones link food availability and population processes in seabirds. Mar Ecol Prog Ser 352:245–258

    Article  Google Scholar 

  • Koren L, Nakagawa S, Burke T, Soma KK, Wynne-Edwards KE, Geffen E (2012) Non-breeding feather concentrations of testosterone, corticosterone and cortisol are associated with subsequent survival in wild house sparrows. P Roy Soc B Bio 279:1560–1566

    Article  CAS  Google Scholar 

  • Laaksonen T, Korpimäki E, Hakkarainen H (2002) Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm’s owls. J Anim Ecol 71:23–31

    Article  Google Scholar 

  • Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149

    Article  CAS  PubMed  Google Scholar 

  • Lettink M, Norbury G, Cree A, Seddon PJ, Duncan RP, Schwarz CJ (2010) Removal of introduced predators, but not artificial refuge supplementation, increases skink survival in coastal duneland. Biol Conserv 143:72–77

    Article  Google Scholar 

  • Lindström Å, Hasselquist D, Bensch S, Grahn M (1990) Asymmetric contests over resources for survival and migration: a field experiment with bluethroats. Anim Behav 40:453–461

    Article  Google Scholar 

  • Lozano GA (1994) Size, condition, and territory ownership in male tree swallows (Tachycineta bicolor). Can J Zool 72:330–333

    Article  Google Scholar 

  • MacLean AA (1986) Age-specific foraging ability and the evolution of deferred breeding in three species of gulls. Wilson Bull 98:267–279

    Google Scholar 

  • Marchetti K, Price T (1989) Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biol Rev 64:51–70

    Article  Google Scholar 

  • Marra PP, Holberton RL (1998) corticosterone levels as indicators of habitat quality: effects of habitat segregation in a migratory bird during the non-breeding season. Oecologia 116:284–292

    Article  Google Scholar 

  • McDonald PG, Olsen PD, Cockburn A (2005) Selection on body size in a raptor with pronounced reversed sexual size dimorphism: are bigger females better? Behav Ecol 16:48–56

    Article  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    Article  PubMed  Google Scholar 

  • Menu S, Gauthier G, Reed A (2005) Survival of young greater snow geese (Chen caerulescens atlantica) during fall migration. Auk 122:479–496

    Article  Google Scholar 

  • Møller AP, de Lope F (1999) Senescence in a short-lived migratory bird: age-dependent morphology, migration, reproduction and parasitism. J Anim Ecol 68:163–171

    Article  Google Scholar 

  • Morrell CH, Brant LJ, Ferrucci L (2009) Model choice can obscure results in longitudinal studies. J Gerontol A Biol Sci Med Sci 64:215–222

    Article  PubMed  Google Scholar 

  • Mueller HC, Berger DD (1976) Age and sex variation in the size of goshawks. Bird-banding 47:310–318

    Article  Google Scholar 

  • Mueller HC, Berger DD (1979) Age and sex differences in size of Sharp-shinned Hawks. Bird-Banding 50:34–44

    Article  Google Scholar 

  • Müller C, Jenni-Eiermann S, Jenni L (2009) Effects of a short period of elevated circulating corticosterone on postnatal growth in free-living Eurasian kestrels Falco tinnunculus. J Exp Biol 212:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Murphy ME, King JR, Lu J (1988) Malnutrition during the postnuptial molt of white-crowned sparrows: feather growth and quality. Can J Zool 66:1403–1413

    Article  Google Scholar 

  • Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166

    Article  Google Scholar 

  • Newton I, Rothery P (1997) Senescence and reproductive value in sparrowhawks. Ecology 78:1000–1008

    Article  Google Scholar 

  • Ontiveros D (1995) Velocidad de crecimiento de rémiges y rectrices en Milvus migrans y Buteo buteo durante la muda. Ardeola 42:183–189

    Google Scholar 

  • Palokangas R, Hissa R (1971) Thermoregulation in young black-headed gull (Larus ridibundus L.). Comp Biochem Physiol A 38:743–750

    Article  CAS  Google Scholar 

  • Pap PL, Vágási CI, Czirják GÁ, Barta Z (2008) Diet quality affects postnuptial molting and feather quality of the house sparrow (Passer domesticus): interaction with humoral immune function? Can J Zool 86:834–842

    Article  Google Scholar 

  • Patterson AG, Kitaysky AS, Lyons DE, Roby DD (2015) Nutritional stress affects corticosterone deposition in feathers of Caspian tern chicks. J Avian Biol 46:18–24

    Article  Google Scholar 

  • Richard S, Wacrenier-Ceré N, Hazard D, Saint-Dizier H, Arnould C, Faure JM (2008) Behavioural and endocrine fear responses in Japanese quail upon presentation of a novel object in the home cage. Behav Process 77:313–319

    Article  CAS  Google Scholar 

  • Richner H (1989) Phenotypic correlates of dominance in carrion crows and their effects on access to food. Anim Behav 38:606–612

    Article  Google Scholar 

  • Romero LM, Remage-Healey L (2000) Daily and seasonal variation in response to stress in captive starlings (Sturnus vulgaris): Corticosterone. Gen Comp Endocrinol 119:52–59

    Article  CAS  PubMed  Google Scholar 

  • Romero M, Wilkelski M (2001) Corticosterone levels predict survival probabilities of Galápagos marine iguanas during El Niño events. PNAS 98:7366–7370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero LM, Strochlic D, Wingfield JC (2005) Corticosterone inhibits feather growth: potential mechanism explaining seasonal down regulation of corticosterone during molt. Comp Biochem Physiol A 142:65–73

    Article  CAS  Google Scholar 

  • Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389

    Article  PubMed  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. Vienna, Austria. http://www.r-project.org

  • Sánchez-Zapata JA, Donázar JA, Delgado A, Forero MG, Ceballos O, Hiraldo F (2007) Desert locust outbreaks in the Sahel: resource competition, predation and ecological effects of pest control. J Appl Ecol 44:323–329

    Article  Google Scholar 

  • Sapolsky RM, Altmann J (1991) Incidence of hypercortisolism and dexamethasone resistance increases with age among wild baboons. Biol Psychiat 30:1008–1016

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticosteroids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass-size residuals: validating body condition indices. Ecology 86:155–163

    Article  Google Scholar 

  • Sedinger JS, Schamber JL, Ward DH, Nicolai CA, Conant B (2011) Carryover effects associated with winter location affect fitness, social status, and population dynamics in a long-distance migrant. Am Nat 178:E110–E123

    Article  PubMed  Google Scholar 

  • Sergio F, Blas J, Forero MG, Donázar JA, Hiraldo F (2007a) Size-related advantages for reproduction in a slightly dimorphic raptor: opposite trends between the sexes. Ethology 113:1141–1150

    Article  Google Scholar 

  • Sergio F, Blas J, Forero MG, Donázar JA, Hiraldo F (2007b) Sequential settlement and site dependence in a migratory raptor. Behav Ecol 18:811–821

    Article  Google Scholar 

  • Sergio F, Blas J, Baos R, Forero MG, Donázar JA, Hiraldo F (2009a) Short-and long-term consequences of individual and territory quality in a long-lived bird. Oecologia 160:507–514

    Article  PubMed  Google Scholar 

  • Sergio F, Blas J, Hiraldo F (2009b) Predictors of floater status in a long-lived bird: a cross-sectional and longitudinal test of hypotheses. J Anim Ecol 78:109–118

    Article  PubMed  Google Scholar 

  • Sergio F, Blas J, Blanco G, Tanferna A, López L, Lemus JA, Hiraldo F (2011a) Raptor nest decorations are a reliable threat against conspecifics. Science 331:327–330

    Article  CAS  PubMed  Google Scholar 

  • Sergio F, Tavecchia G, Blas J, López L, Tanferna A, Hiraldo F (2011b) Variation in age-structured vital rates of a long-lived raptor: implications for population growth. Basic Appl Ecol 12:107–115

    Article  Google Scholar 

  • Sergio F, Tanferna A, De Stephanis R, López-Jiménez L, Blas J, Tavecchia G, Preatoni D, Hiraldo F (2014) Individual improvements and selective mortality shape lifelong migratory performance. Nature 515:410–413

    Article  CAS  PubMed  Google Scholar 

  • Slagsvold T (1982) Sex, size, and natural selection in the hooded crow Corvus corone cornix. Ornis Scand 13:165–175

    Article  Google Scholar 

  • Stokes DL, Boersma PD (2000) Nesting density and reproductive success in a colonial seabird, the Magellanic penguin. Ecology 81:2878–2891

    Article  Google Scholar 

  • Swanson DL, Liknes ET, Dean KL (1999) Differences in migratory timing and energetic condition among sex/age classes in migrant ruby-crowned kinglets. Wilson Bull 111:61–69

    Google Scholar 

  • Symonds MR, Moussalli A (2011) A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21

    Article  Google Scholar 

  • Tanferna A, López-Jiménez L, Blas J, Hiraldo F, Sergio F (2013) Habitat selection by Black kite breeders and floaters: implications for conservation management of raptor floaters. Biol Conserv 160:1–9

    Article  Google Scholar 

  • Tapper SC, Potts GR, Brockless MH (1996) The effect of an experimental reduction in predation pressure on the breeding success and population density of grey partridges Perdix perdix. J App Ecol 33:965–978

    Article  Google Scholar 

  • Vágási CI, Pap PL, Tökölyi J, Székely E, Barta Z (2011) Correlates of variation in flight feather quality in the great tit Parus major. Ardea 99:53–60

    Article  Google Scholar 

  • Vágási CI, Pap PL, Vincze O, Benko Z, Marton A, Barta Z (2012) Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird. PloS 7:e40651–e40651

    Article  CAS  Google Scholar 

  • Wack CL, DuRant SE, Hopkins WA, Lovern MB, Feldhoff RC, Woodley SK (2012) Elevated plasma corticosterone increases metabolic rate in a terrestrial salamander. Comp Biochem Physiol A 161:153–158

    Article  CAS  Google Scholar 

  • Watson MJ, Hatch JJ (1999) Differences in foraging performance between juvenile and adult roseate terns at a pre-migratory staging area. Waterbirds 22:463–465

    Article  Google Scholar 

  • Wayland M, Gilchrist HG, Marchant T, Keating J, Smits JE (2002) Immune function, stress response, and body condition in arctic-breeding common eiders in relation to cadmium, mercury, and selenium concentrations. Environ Res 90:47–60

    Article  CAS  PubMed  Google Scholar 

  • Weatherhead PJ, Boag PT (1995) Pair and extra-pair mating success relative to male quality in red-winged blackbirds. Behav Ecol Sociobiol 37:81–91

    Article  Google Scholar 

  • Weimerskirch H (1992) Reproductive effort in long-lived birds: age-specific patterns of condition, reproduction and survival in the wandering albatross. Oikos 64:464–473

    Article  Google Scholar 

  • Wilcoxen TE, Boughton RK, Bridge ES, Rensel MA, Schoech SJ (2011) Age-related differences in baseline and stress-induced corticosterone in Florida scrub-jays. Gen Comp Endocrinol 173:461–466

    Article  CAS  PubMed  Google Scholar 

  • Will A, Watanuki Y, Kikuchi DM, Sato N, Ito M, Callahan M, Wynne-Edwards K, Hatch S, Elliott K, Slater L, Takahashi A, Kitaysky A (2015) Feather corticosterone reveals stress associated with dietary changes in a breeding seabird. Ecol Evol. doi:10.1002/ece3.1694

    PubMed  PubMed Central  Google Scholar 

  • Wingfield JC, Silverin B (1986) Effects of corticosterone on territorial behaviour of free-living male song-sparrows Melospiza melodia. Horm Behav 20:405–417

    Article  CAS  PubMed  Google Scholar 

  • Wingfield JC, Smith JP, Farner DS (1982) Endocrine responses of white-crowned sparrows to environmental stress. Condor 84:399–409

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We thank F.J. Chicano, F.G. Vilches, J.M. Giralt and M. Anjos for their help in the field, the Laboratorio de Ecología Molecular at the Estación Biológica de Doñana (LEM-EBD) for conducting the molecular sexing analyses, and the personnel of the Reserva Biológica de Doñana for facilitating help and accommodation. J.B. was supported by a Ramón y Cajal contract from the Spanish Ministry and CSIC. Part of this study was funded by research projects CGL2008-01781, CGL2011-28103, CGL2015-69445-P and CGL2012-32544 of the Spanish Ministry of Science and Innovation and FEDER funds (European Union), JA-58 of the Consejería de Medio Ambiente de la Junta de Andalucía, the Excellence Projects RNM 1790, RNM 3822 and RNM 7307 of the Junta de Andalucía, and grant 511/2012 (National Parks) from the Spanish Ministry of Agriculture, Food and the Environment.

Author contribution statement

LLJ, JB, FS, AT and FH conducted the fieldwork and analysed the data. SC and TM performed the laboratory analyses. All authors took part in the conceptual planning of the study and in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia López-Jiménez.

Ethics declarations

Ethical approval

All applicable institutional and national guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Michael Sheriff.

The results of our work broaden the knowledge of adrenocortical function and feather CORT deposition in birds. We provide the first lifelong profile of ontogenetic variation in feather CORT levels in a raptor species. This measure appears to capture the most sensitive and energetically challenging periods in the life cycle of these birds and supports the idea of a tight link between cumulative physiological responses to ecological challenges and demographic performance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Jiménez, L., Blas, J., Tanferna, A. et al. Lifetime variation in feather corticosterone levels in a long-lived raptor. Oecologia 183, 315–326 (2017). https://doi.org/10.1007/s00442-016-3708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3708-0

Keywords

Navigation