Skip to main content

Advertisement

Log in

Tracking larvae with molecular markers reveals high relatedness and early seasonal recruitment success in a partially spawning marine bivalve

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The partial synchronized spawning strategy adopted by some marine invertebrate broadcast-spawners can lead to the production of many distinct pools of larvae within a single reproductive cycle. Following the fate of these larval groups from birth to settlement with molecular markers might shed light on mechanisms regulating their population recruitment. Larvae and recruits of Mya arenaria, a partially spawning marine bivalve, were monitored and collected over 13 consecutive weeks during an entire reproductive cycle. Each sampled individual (n = 218) was sorted according to size (early veligers, late veligers, post-larval recruits) and genotyped at seven microsatellite loci for comparisons among samples and with adult reference samples (n = 270). While traditional differentiation statistics (e.g., pairwise ϴ ST, allelic richness) suggested the absence of sweepstakes reproductive success, the level of relatedness found within and among larvae and recruit samples suggested otherwise. Four samples out of ten were observed to have higher within-sample relatedness values than randomly expected, including the very first group of early veligers produced in the season (E1) and the last group of post-larvae who survived recruitment (P10). E1 individuals were also found to be more related than randomly expected to individuals of more than 80 % of all other samples including the last surviving recruits (P8 and P10). These results suggest that the first larvae produced in the season were the most successful to survive recruitment. Results also show direct evidence for larval retention and demonstrate for the first time larval and post-larval kin aggregation in a marine bivalve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aglieri G, Papetti C, Zane L, Milisenda G, Boero F, Piraino S (2014) First evidence of inbreeding, relatedness and chaotic genetic patchiness in the holoplanktonic jellyfish Pelagia noctiluca (Scyphozoa, Cnidaria). PLoS ONE 9:e99647

    Article  PubMed Central  PubMed  Google Scholar 

  • Barber BJ, Fajans JS, Baker SM, Baker P (2005) Gametogenesis in the non-native green mussel, Perna viridis, and the native scorched mussel, Brachidontes exustus, in Tampa Bay, Florida. J Shellfish Res 24:1087–1095

    Article  Google Scholar 

  • Barker FK, Bell JJ, Bogdanowicz SM, Bonatto SL, Cezilly F, Collins SM, Dubreuil C, Dufort MJ, Eraud C, Fuseya R, Heap EA, Jacobsen N, Madders M, McEwing R, Michel AP, Mougeot F, Ogden RS, Orantes LC, Othman AS, Parent E, Pulido-Santacruz P, Rioux-Pare R, Roberts MF, Rosazlina R, Sakamoto T, de-Leon PS, Sevigny JM, St-Onge P, Terraube J, Tingay RE, Tremblay R, Watanabe S, Wattier RA, Molecular Ecology Resources Primer Development Consortium (2011) Permanent genetic resources added to molecular ecology resources database. Mol Ecol Resour 11:1124–1126

    Article  PubMed  Google Scholar 

  • Becker BJ, Levin LA, Fodrie FJ, McMillan PA (2007) Complex larval connectivity patterns among marine invertebrate populations. Proc Natl Acad Sci USA 104:3267–3272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berglund M, Jacobi MN, Jonsson PR (2012) Optimal selection of marine protected areas based on connectivity and habitat quality. Ecol Model 240:105–112

    Article  Google Scholar 

  • Bernardi G, Beldade R, Holbrook SJ, Schmitt RJ (2012) Full-sibs in cohorts of newly settled coral reef fishes. PLoS ONE 7:e44953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berumen ML, Almany GR, Planes S, Jones GP, Saenz-Agudelo P, Thorrold SR (2012) Persistence of self-recruitment and patterns of larval connectivity in a marine protected area network. Ecol Evol 2:444–452

    Article  PubMed Central  PubMed  Google Scholar 

  • Bierne N, Launey S, Naciri-Graven Y, Bonhomme F (1998) Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics 148:1893–1906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borrell YJ, Blanco G, Vazquez E, Pinera JA, Gimenez G, Estevez A, Sanchez LA (2008) Assessing the spawning season in common dentex (Dentex dentex) using microsatellites. Aquacult Res 39:1258–1267

    Article  Google Scholar 

  • Botsford LW, White JW, Coffroth MA, Paris CB, Planes S, Shearer TL, Thorrold SR, Jones GP (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28:327–337

    Article  PubMed Central  PubMed  Google Scholar 

  • Bricelj VM, Krause MK (1992) Resource allocation and population genetics of the bay scallop, Argopecten irradians—effects of age and allozyme heterozygosity on reproductive output. Mar Biol 113:253–261

    CAS  Google Scholar 

  • Brousseau DJ (1978) Population dynamics of the soft-shell clam Mya arenaria. Mar Biol 50:63–71

    Article  Google Scholar 

  • Cardoso JFMF, Witte JIJ, van der Veer HW (2009) Differential reproductive strategies of two bivalves in the Dutch Wadden Sea. Estuar Coast Shelf Sci 84:37–44

    Article  Google Scholar 

  • Cardoso JFMF, Peralta NRE, Machado JP, van der Veer HW (2013) Growth and reproductive investment of introduced Pacific oysters Crassostrea gigas in southern European waters. Estuar Coast Shelf Sci 118:24–30

    Article  Google Scholar 

  • Cassista MC, Hart MW (2007) Spatial and temporal genetic homogeneity in the Arctic surfclam (Mactromeris polynyma). Mar Biol 152:569–579

    Article  Google Scholar 

  • Christie MR, Johnson DW, Stallings CD, Hixon MA (2010) Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish. Mol Ecol 19:1042–1057

    Article  PubMed  Google Scholar 

  • Cledon M, Brichtova ACP, Gutierrez JL, Penchaszadeh PE (2004) Reproductive cycle of the stout razor clam, Tagelus plebeius (Lightfoot, 1786), in the Mar Chiquita Coastal Lagoon, Argentina. J Shellfish Res 23:443–446

    Google Scholar 

  • Cyr C, Myrand B, Cliche G, Desrosiers G (2007) Weekly spat collection of sea scallop, Placopecten magellanicus, and undesirable species as a potential tool to predict an optimal deployment period of collectors. J Shellfish Res 26:1045–1054

    Article  Google Scholar 

  • David P, Perdieu MA, Pernot AF, Jarne P (1997) Fine-grained spatial and temporal population genetic structure in the marine bivalve Spisula ovalis. Evolution 51:1318–1322

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NEESTIMATOR v2: re-implementation of software for the estimation of contemporary effective population size (N e) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Dukeman AK, Blake NJ, Arnold WS (2005) The reproductive cycle of the flame scallop, Ctenoides scaber (Born 1778), from the lower Florida Keys and its relationship with environmental conditions. J Shellfish Res 24:341–351

    Article  Google Scholar 

  • Enriquez-Diaz M, Pouvreau S, Chavez-Villalba J, Le Pennec M (2009) Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: evidence of an environment-dependent strategy. Aquacult Int 17:491–506

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, London

    Google Scholar 

  • Gaudette J, Wahle RA, Himmelman JH (2006) Spawning events in small and large populations of the green sea urchin Strongylocentrotus droebachiensis as recorded using fertilization assays. Limnol Oceanogr 51:1485–1496

    Article  Google Scholar 

  • Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra F (2011) Understanding and estimating effective population size for practical application in marine species management. Conserv Biol 25:438–449

    Article  PubMed  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362

    Article  Google Scholar 

  • Hedgecock D (2010) Determining parentage and relatedness from genetic markers sheds light on patterns of marine larval dispersal. Mol Ecol 19:845–847

    Article  PubMed  Google Scholar 

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002

    Article  Google Scholar 

  • Himmelman JH, Dumont CP, Gaymer CF, Vallieres C, Drolet D (2008) Spawning synchrony and aggregative behaviour of cold-water echinoderms during multi-species mass spawnings. Mar Ecol Prog Ser 361:161–168

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Horne JB, van Herwerden L, Abellana S, McIlwain JL (2013) Observations of migrant exchange and mixing in a coral reef fish metapopulation link scales of marine population connectivity. J Hered 104:532–546

    Article  CAS  PubMed  Google Scholar 

  • Iacchei M, Ben-Horin T, Selkoe KA, Bird CE, Garcia-Rodriguez FJ, Toonen RJ (2013) Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations. Mol Ecol 22:3476–3494

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson MS, Black R (1982) Chaotic genetic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol 70:157–164

    Article  Google Scholar 

  • Jones OR, Wang JL (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30

    Article  PubMed  Google Scholar 

  • Jost L (2008) G(ST) and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Lamare MD (1998) Origin and transport of larvae of the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea) in a New Zealand fjord. Mar Ecol Prog Ser 174:107–121

    Article  Google Scholar 

  • Langton RW, Robinson WE, Schick D (1987) Fecundity and reproductive effort of sea scallops Placopecten magellanicus from the Gulf of Maine. Mar Ecol Prog Ser 37:19–25

    Article  Google Scholar 

  • Larsen JB, Frischer ME, Rasmussen LJ, Hansen BW (2005) Single-step nested multiplex PCR to differentiate between various bivalve larvae. Mar Biol 146:1119–1129

    Article  CAS  Google Scholar 

  • Lasker HR, Gutierrez-Rodriguez C, Bala K, Hannes A, Bilewitch JP (2008) Male reproductive success during spawning events of the octocoral Pseudopterogorgia elisabethae. Mar Ecol Prog Ser 367:153–161

    Article  Google Scholar 

  • Lauzon-Guay JS, Scheibling RE (2007) Importance of spatial population characteristics on the fertilization rates of sea urchins. Biol Bull 212:195–205

    Article  PubMed  Google Scholar 

  • LeBlanc S, Miron G (2006) Bentho-pelagic distribution of early stages of softshell clams (Mya arenaria) in tidally contrasted regimes. Can J Zool 84:459–472

    Article  Google Scholar 

  • Lemay MA, Boulding EG (2009) Microsatellite pedigree analysis reveals high variance in reproductive success and reduced genetic diversity in hatchery-spawned northern abalone. Aquaculture 295:22–29

    Article  CAS  Google Scholar 

  • Levitan DR, Petersen C (1995) Sperm limitation in the sea. Trends Ecol Evol 10:228–231

    Article  CAS  PubMed  Google Scholar 

  • Levitan DR, Young CM (1995) Reproductive success in large populations—empirical measures and theoretical predictions of fertilization in the sea biscuit Clypeaster rosaceus. J Exp Mar Biol Ecol 190:221–241

    Article  Google Scholar 

  • Li G, Hedgecock D (1998) Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can J Fish Aquat Sci 55:1025–1033

    Article  CAS  Google Scholar 

  • Li RH, Li Q (2011) Mating systems and reproductive success in hermaphroditic bay scallop, Argopecten irradians irradians (Lamarck 1819), inferred by microsatellite-based parentage analysis. J World Aquacult Soc 42:888–898

    Article  Google Scholar 

  • Li CC, Weeks DE, Chakravarti A (1993) Similarity of DNA fingerprints due to chance and relatedness. Hum Hered 43:45–52

    Article  CAS  PubMed  Google Scholar 

  • Lynch M (1988) Estimation of relatedness by DNA fingerprinting. Mol Biol Evol 5:584–599

    CAS  PubMed  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall DJ (2002) In situ measures of spawning synchrony and fertilization success in an intertidal, free-spawning invertebrate. Mar Ecol Prog Ser 236:113–119

    Article  Google Scholar 

  • Mercier A, Hamel JF (2010) Synchronized breeding events in sympatric marine invertebrates: role of behavior and fine temporal windows in maintaining reproductive isolation. Behav Ecol Sociobiol 64:1749–1765

    Article  Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed Central  PubMed  Google Scholar 

  • Morgan SG, Fisher JL, Miller SH, McAfee ST, Largier JL (2009) Nearshore larval retention in a region of strong upwelling and recruitment limitation. Ecology 90:3489–3502

    Article  PubMed  Google Scholar 

  • Myrand B, Guderley H, Himmelman JH (2000) Reproduction and summer mortality of blue mussels Mytilus edulis in the Magdalen Islands, southern Gulf of St. Lawrence. Mar Ecol Prog Ser 197:193–207

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nomura T (2008) Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol Appl 1:462–474

    Article  PubMed Central  PubMed  Google Scholar 

  • Palumbi SR (2004) Marine reserves and ocean neighbourhoods: the spatial scale of marine populations and their management. Annu Rev Environ Resour 29:31–68

    Article  Google Scholar 

  • Pemberton JM (2008) Wild pedigrees: the way forward. Proc R Soc Lond Ser B 275:613–621

    Article  CAS  Google Scholar 

  • Queller D, Goodnight K (1989) Estimating relatedness using molecular markers. Evolution 43:258–275

    Article  Google Scholar 

  • Rios C, Canales J, Pena JB (1996) Genotype-dependent spawning: evidence from a wild population of Pecten jacobaeus (L.) (Bivalvia: Pectinidae). J Shellfish Res 15:645–651

    Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and inbreeding coefficients. Genet Res 67:175–186

    Article  Google Scholar 

  • Roseberry L, Vincent B, Lemaire C (1991) Growth and reproduction of Mya arenaria in their intertidal zone of the Saint-Lawrence estuary. Can J Zool 69:724–732

    Article  Google Scholar 

  • Royer J, Seguineau C, Park KI, Pouvreau S, Choi KS, Costil K (2008) Gametogenetic cycle and reproductive effort assessed by two methods in 3 age classes of Pacific oysters, Crassostrea gigas, reared in Normandy. Aquaculture 277:313–320

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Selkoe KA, Gaines SD, Caselle JE, Warner RR (2006) Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87:3082–3094

    Article  PubMed  Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385

    PubMed  Google Scholar 

  • Siegel DA, Kinlan BP, Gaylord B, Gaines SD (2003) Lagrangian descriptions of marine larval dispersion. Mar Ecol Prog Ser 260:83–96

    Article  Google Scholar 

  • Simon TN, Levitan DR (2011) Measuring fertilization success of broadcast-spawning marine invertebrates within seagrass meadows. Biol Bull 220:32–38

    PubMed  Google Scholar 

  • St-Onge P, Sevigny JM, Strasser C, Tremblay R (2013) Strong population differentiation of softshell clams (Mya arenaria) sampled across seven biogeographic marine ecoregions: possible selection and isolation by distance. Mar Biol 160:1065–1081

    Article  Google Scholar 

  • Taris N, Boudry P, Bonhomme F, Camara MD, Lapegue S (2009) Mitochondrial and nuclear DNA analysis of genetic heterogeneity among recruitment cohorts of the European flat oyster Ostrea edulis. Biol Bull 217:233–241

    CAS  PubMed  Google Scholar 

  • Van de Casteele T, Galbusera P, Matthysen E (2001) A comparison of microsatellite-based pairwise relatedness estimators. Mol Ecol 10:1539–1549

    Article  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Varela MA, Martinez-Lage A, Gonzalez-Tizon AM (2009) Temporal genetic variation of microsatellite markers in the razor clam Ensis arcuatus (Bivalvia: Pharidae). J Mar Biol Assoc UK 89:1703–1707

    Article  CAS  Google Scholar 

  • Veliz D, Duchesne P, Bourget E, Bernatchez L (2006) Genetic evidence for kin aggregation in the intertidal acorn barnacle (Semibalanus balanoides). Mol Ecol 15:4193–4202

    Article  CAS  PubMed  Google Scholar 

  • Wang JL (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89:135–153

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164

    Article  PubMed  Google Scholar 

  • Wang JL (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145

    Article  PubMed  Google Scholar 

  • Wang J, Santure AW (2009) Parentage and sibship inference from multi-locus genotype data under polygamy. Genetics 181:1579–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yund PO (2000) How severe is sperm limitation in natural populations of marine free-spawners? Trends Ecol Evol 15:10–13

    Article  PubMed  Google Scholar 

  • Zhan AB, Bao ZM, Hu XL, Lu W, Wang S, Peng W, Wang ML, Hui M, Hu JJ (2008) Accurate methods of DNA extraction and PCR-based genotyping for single scallop embryos/larvae long preserved in ethanol. Mol Ecol Resour 8:790–795

    Article  CAS  PubMed  Google Scholar 

  • Zhdanova OL, Pudovkin AI (2008) Nb_HetEx: a program to estimate the effective number of breeders. J Hered 99:694–695

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the following for their much appreciated help in the field and in the laboratory: Philippe Galipeau, Éric Parent, Éric Tremblay, Léophane Leblanc, Firmin Leblanc, Gilles Miron, Marie-Josée Abgrall, Chantal Gionet, Chantale Daigle, Iften Redjah, Gilles Courcy, Yves Lambert, Efflam Guillou, Jinliang Wang, Dany Garant, André Martel and the Kouchibouguac National Park of Canada. This study was funded by the Aquaculture Collaborative Research and Development Program (ACRDP), the National Sciences and Engineering Research Council of Canada (NSERC) and the Ressources Aquatiques du Québec (RAQ) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe St-Onge.

Additional information

Communicated by Ken Spitze.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

St-Onge, P., Tremblay, R. & Sévigny, JM. Tracking larvae with molecular markers reveals high relatedness and early seasonal recruitment success in a partially spawning marine bivalve. Oecologia 178, 733–746 (2015). https://doi.org/10.1007/s00442-015-3245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3245-2

Keywords

Navigation