Skip to main content
Log in

A comparative analysis of photosynthetic recovery from thermal stress: a desert plant case study

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

An Erratum to this article was published on 15 October 2014

Abstract

Our understanding of the effects of heat stress on plant photosynthesis has progressed rapidly in recent years through the use of chlorophyll a fluorescence techniques. These methods frequently involve the treatment of leaves for several hours in dark conditions to estimate declines in maximum quantum yield of photsystem II (F V/F M), rarely accounting for the recovery of effective quantum yield (ΔF/F M′) after thermally induced damage occurs. Exposure to high temperature extremes, however, can occur over minutes, rather than hours, and recent studies suggest that light influences damage recovery. Also, the current focus on agriculturally important crops may lead to assumptions about average stress responses and a poor understanding about the variation among species’ thermal tolerance. We present a chlorophyll a fluorescence protocol incorporating subsaturating light to address whether species’ thermal tolerance thresholds (T 50) are related to the ability to recover from short-term heat stress in 41 Australian desert species. We found that damage incurred by 15-min thermal stress events was most strongly negatively correlated with the capacity of species to recover after a stress event of 50 °C in summer. Phylogenetically independent contrast analyses revealed that basal divergences partially explain this relationship. Although T 50 and recovery capacity were positively correlated, the relationship was weaker for species with high T 50 values (>51 °C). Results highlight that, even within a single desert biome, species vary widely in their physiological response to high temperature stress and recovery metrics provide more comprehensive information than damage metrics alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AGBoM (Australian Government Bureau of Meteorology) (2013) Monthly climate statistics—Port Augusta, vol. 2013. Available at:http://www.bom.gov.au/jsp/ncc/cdio/cvg/av

  • Aro EM, McCaffery S, Anderson JM (1994) Recovery from photoinhibition in peas (Pisum sativum L.) acclimated to varying growth irradiances (role of D1 protein turnover). Plant Physiol 104:1033–1041. doi:10.1104/pp.104.3.1033

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. doi:10.1146/annurev.arplant.59.032607.092759

    Article  PubMed  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621. doi:10.1093/jxb/erh196

    Article  PubMed  CAS  Google Scholar 

  • Ball MC (1988) Ecophysiology of mangroves. Trees Struct Funct 2:129–142. doi:10.1007/bf00196018

    Article  Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi:10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  • Buchner O, Karadar M, Bauer I, Neuner G (2013) A novel system for in situ determination of heat tolerance of plants: first results on alpine dwarf shrubs. Plant Methods 9:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter TR, Jones RN, Lu X (coordinating lead authors) (2007) New assessment methods and the characterisation of future conditions. In: Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 133–171

  • CSIRO (Commonwealth Scientific and Industrial Research Organisation) and AGBoM (2007) Climate change in Australia—technical report 2007, chapter 5: regional climate change projections. CSIRO, Canberra, p; 49–75. Available at: http://www.climatechangeinaustralia.gov.au/documents/resources/TR_Web_Ch5i.pdf

  • Claussen W (2005) Proline as a measure of stress in tomato plants. Plant Sci 168:241–248. doi:10.1016/j.plantsci.2004.07.039

    Article  CAS  Google Scholar 

  • DeEll JR, Toivonen PM (2003) Practical applications of chlorophyll fluorescence in plant biology. Springer SBM, Dordrecht

  • Demmig-Adams B, Adams W III (1996) Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198:460–470. doi:10.1007/BF00620064

    Article  CAS  Google Scholar 

  • Derocher AE, Helm KW, Lauzon LM, Vierling E (1991) Expression of a conserved family of cytoplasmic low-molecular-weight heat-shock-proteins during heat-stress and recovery. Plant Physiol 96:1038–1047. doi:10.1104/pp.96.4.1038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Downton WJS, Berry JA (1982) Chlorophyll fluorescence at high temperature. Biochim Biophys Acta 679:474–478. doi:10.1016/0005-2728(82)90169-4

    Article  CAS  Google Scholar 

  • Downton WJS, Berry JA, Seemann JR (1984) Tolerance of photosynthesis to high temperature in desert plants. Plant Physiol 74:786–790. doi:10.1104/pp.74.4.786

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. doi:10.1086/284325

    Article  Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32. doi:10.2307/2992503

    Article  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/s0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Georgieva K, Yordanov I (1994) Temperature dependence of photochemical and non-photochemical fluorescence quenching in intact pea leaves. J Plant Physiol 144:754–759. doi:10.1016/s0176-1617(11)80673-5

    Article  CAS  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Phil Trans R Soc Lond B 326:119–157. doi:10.1098/rstb.1989.0106

    Article  CAS  Google Scholar 

  • Haldimann P, Feller U (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27:1169–1183. doi:10.1111/j.1365-3040.2004.01222.x

    Article  CAS  Google Scholar 

  • Harding SA, Guikema JA, Paulsen GM (1990) Photosynthetic decline from high temperature stress during maturation of wheat. Plant Physiol 92:654–658. doi:10.1104/pp.92.3.654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Havaux M, Tardy F (1997) Thermostability and photostability of photosystem II in leaves of the chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol 113:913–923. doi:10.1104/pp.113.3.913

    PubMed  CAS  PubMed Central  Google Scholar 

  • Havaux M, Greppin H, Strasser R (1991) Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta 186:88–98. doi:10.1007/BF00201502

    Article  PubMed  CAS  Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. doi:10.1111/j.1461-0248.2005.00796.x

    Article  Google Scholar 

  • Knight C, Ackerly D (2002) An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence. Oecologia 130:505–514. doi:10.1007/s00442-001-0841-0

    Article  Google Scholar 

  • Knight CA, Ackerly DD (2003) Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytol 160:337–347. doi:10.1046/j.1469-8137.2003.00880.x

    Article  CAS  Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–182. doi:10.1104/pp.120.1.173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leigh A, Sevanto S, Ball M et al (2012) Do thick leaves avoid thermal damage in critically low wind speeds? New Phytol 194:477–487. doi:10.1111/j.1469-8137.2012.04058.x

  • Marutani Y, Yamauchi Y, Kimura Y, Mizutani M, Sugimoto Y (2012) Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes. Planta 236:753–761. doi:10.1007/s00425-012-1647-5

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (ed) (2005) Physiochemical and environmental plant physiology, 3rd edn. Elsevier Academic Press, Boston

    Google Scholar 

  • Pessarakli M (1994) Handbook of plant and crop stress. Marcel Dekker, New York

  • Roden J (2003) Modeling the light interception and carbon gain of individual fluttering aspen (Populus tremuloides Michx) leaves. Trees Struct Funct 17:117–126. doi:10.1007/s00468-002-0213-3

    Google Scholar 

  • Roden JS, Pearcy RW (1993) The effect of flutter on the temperature of poplar leaves and its implications for carbon gain. Plant Cell Environ 16:571–577. doi:10.1111/j.1365-3040.1993.tb00905.x

    Article  Google Scholar 

  • Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238. doi:10.1007/bf00385990

    Article  PubMed  CAS  Google Scholar 

  • Seemann JR, Berry JA, Downton WJS (1984) Photosynthetic response and adaptation to high temperature in desert plants: a comparison of gas exchange and fluorescence methods for studies of thermal tolerance. Plant Physiol 75:364–368. doi:10.1104/pp.75.2.364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharkey T, Schrader S (2006) High temperature stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer SBM, Dordrecht, pp 101–129

  • Singh RP, Prasad PVV, Sunita K, Giri SN, Reddy KR (2007) Influence of high temperature and breeding for heat tolerance in cotton: a review. In: Donald LS (ed) Advances in agronomy, vol 93. Academic Press, Waltham, pp 31–385

  • Tsonev T, Velikova V, Lambreva M, Stefanov D (1999) Recovery of the photosynthetic apparatus in bean plants after high- and low-temperature induced photoinhibition. Bulg J Plant Physiol 25:45–53

    CAS  Google Scholar 

  • Vallélian-Bindschedler L, Schweizer P, Mösinger E, Métraux JP (1998) Heat-induced resistance in barley to powdery mildew (Blumeria graminisf.sp.hordei) is associated with a burst of active oxygen species. Physiol Mol Plant Pathol 52:185–199. doi:10.1006/pmpp.1998.0140

    Article  Google Scholar 

  • Vogel S (2005) Living in a physical world V. Maintaining temperature. J Biosci 30:581–590. doi:10.1007/BF02703556

    Article  PubMed  Google Scholar 

  • Walther G-R (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185. doi:10.1078/1433-8319-00076

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. doi:10.1093/bioinformatics/btn358

    Article  PubMed  CAS  Google Scholar 

  • Weis E (1982) Influence of light on the heat sensitivity of the photosynthetic apparatus in isolated spinach chloroplasts. Plant Physiol 70:1530–1534. doi:10.1104/pp.70.5.1530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Willits DH, Peet MM (2001) Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: laboratory and greenhouse comparisons. J Am Soc Hortic Sci 126:188–194

    Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724. doi:10.1111/j.1365-3040.2004.01171.x

    Article  CAS  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth Res 57:51–59. doi:10.1023/a:1006019102619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Port Augusta City Council for its generous support in providing an onsite laboratory, infrastructure and site access at the Australian Arid Lands Botanic Garden. We further thank Peter Ralph from the UTS Climate Change Cluster and Brad Murray for thoughtful discussions. We thank two anonymous reviewers for helpful suggestions on an earlier version of this manuscript. We are grateful to the staff of the AALBG, Ronda and Peter Hall (Friends of the AALBG), Melinda Cook, Ben Ford, Norman Booth (ANSTO), Peter Jones, Rod Hungerford and staff at the UTS Workshop. Ellen Curtis was supported by an Australian Postgraduate Award.

Conflict of interest

The authors declare that they have no conflict of interest and that experiments comply with the current laws of Australia, where the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen M. Curtis.

Additional information

Communicated by Allan T. G. Green.

Electronic supplementary material

Below is the link to the electronic supplementary material.

442_2014_2988_MOESM1_ESM.pdf

Phylogenetic tree showing the relatedness among the 41 Australian southern desert plant species used in the study (PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtis, E.M., Knight, C.A., Petrou, K. et al. A comparative analysis of photosynthetic recovery from thermal stress: a desert plant case study. Oecologia 175, 1051–1061 (2014). https://doi.org/10.1007/s00442-014-2988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2988-5

Keywords

Navigation