Skip to main content
Log in

Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Nutrient availability varies across climatic gradients, yet intraspecific adaptation across such gradients in plant traits related to internal cycling and nutrient resorption remains poorly understood. We examined nutrient resorption among six Scots pine (Pinus sylvestris L.) populations of wide-ranging origin grown under common-garden conditions in Poland. These results were compared with mass-based needle N and P for 195 Scots pine stands throughout the species' European range. At the common site, green needle N (r 2=0.81, P=0.01) and P (r 2=0.58, P=0.08) concentration increased with increasing latitude of population origin. Resorption efficiency (the proportion of the leaf nutrient pool resorbed during senescence) of N and P of Scots pine populations increased with the latitude of seed origin (r 2≥0.67, P≤0.05). The greater resorption efficiency of more northerly populations led to lower concentrations of N and P in senescent leaves (higher resorption proficiency) than populations originating from low latitudes. The direction of change in these traits indicates potential adaptation of populations from northern, colder habitats to more efficient internal nutrient cycling. For native Scots pine stands, results showed greater nutrient conservation in situ in cold-adapted northern populations, via extended needle longevity (from 2 to 3 years at 50°N to 7 years at 70°N), and greater resorption efficiency and proficiency, with their greater resorption efficiency and proficiency having genotypic roots demonstrated in the common-garden experiment. However, for native Scots pine stands, green needle N decreased with increasing latitude (r 2=0.83, P=0.0002), and P was stable other than decreasing above 62°N. Hence, the genotypic tendency towards maintenance of higher nutrient concentrations in green foliage and effective nutrient resorption, demonstrated by northern populations in the common garden, did not entirely compensate for presumed nutrient availability limitations along the in situ latitudinal temperature gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608

    Google Scholar 

  • Aerts R, De Caluwe H (1989) Aboveground productivity and nutrient turnover of Molinia caerulea along an experimental gradient of nutrient availability. Oikos 54:320–324

    Google Scholar 

  • Albrektson A (1988) Needle litterfall in stands of Pinus sylvestris L. in Sweden, in relation to site quality, stand age and latitude. Scand J For Res 3:333–342

    Google Scholar 

  • Berg B, Calvo de Anta R, Escudero A, Gärdenäs A, Johansson M-B, Laskowski R, Madeira M, Mälkönen E, McClaugherty C, Meentemeyer V, Virzo De Santo A (1995) The chemical composition of newly shed needle litter of Scots pine and some other pine species in a climatic transect. X. Long-term decomposition in a Scots pine forest. Can J Bot 73:1423–1435

    CAS  Google Scholar 

  • Birk EM, Vitousek PM (1986) Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67:69–79

    Google Scholar 

  • Bobkova KS, Zagirova SV (1999) Some aspects of structural and functional organization in pine needles of different ages (in Russian). Lesovedenie 4:58-63

    Google Scholar 

  • Boerner REJ (1984) Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. J Appl Ecol 21:1029–1040

    Google Scholar 

  • Busch U, Führer H-W (1997) Elementgehalte von Kiefern- und Fichtennadeln südlich von Frankfurt/Main. Allg Forst Jagdz 168:1-6

    Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    CAS  Google Scholar 

  • Chapin FS III (1987) Environmental controls over growth of tundra plants. Ecol Bull (Copenhagen) 38:69–76

    Google Scholar 

  • Chapin FS III, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous Taiga trees. Ecology 64:376–391

    CAS  Google Scholar 

  • Chapin FS III, Moilanen L (1991). Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709–715

    Google Scholar 

  • Czerney P, Fiedler H-J (1969) Vergleichende Untersuchungen zum Ernährungszustand älterer Kiefernbestände auf Pseudogleystandorten Nordwestsachsens. Archiv Forstwes 18:787-812

    CAS  Google Scholar 

  • Eckstein RL, Karlsson PS, Weih M (1999) Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytol 143:177–189.

    Article  Google Scholar 

  • Enoki T, Kawaguchi H (1999) Nitrogen resorption from needles of Pinus thunbergii Parl. growing along a topographic gradient of soil nutrient availability. Ecol Res 14:1-8

    Article  Google Scholar 

  • Fiedler HJ, Müller W (1973) Gewicht und Nährstoffgehalt der Nadlen eines Fichtenaltbestandes auf Thüringer Buntsandstein in Abhängigkeit von Nadelalter und Kronenposition. Beitr Forstwirtsch 7:122–137

    Google Scholar 

  • Fiedler HJ, Wunderlich H, Höhne H (1967) Über den Einfluss des Baumalters und der Standortsform auf die Ausbildung und den Nährelementgehalt der Kiefernnadeln. Arch Forstwes 16:609-616

    Google Scholar 

  • Fiedler HJ, Heinze M, Hofnamm W (1969) Standortskundliche Untersuchungen an ausgewählten Kiefern- und Fichtenbeständen im Ostthüringer Buntsandsteingebiet. Arch Forstwes 18:505-549

    Google Scholar 

  • Fiedler HJ, Höhne H, Leube F (1970) Ergebnisse von Düngungsversuchen zu Kiefernkulturen in der Lausitz (I). Arch Forstwes 19:921-936

    CAS  Google Scholar 

  • Fiedler HJ, Heinze M, Höhne H (1987) Nadelananalytische Erhebung an jungen Schwarzkiefern (Pinus nigra ARNOLD) auf Kalk- und Silikatstandorten Ostthüringens. Beitr Forstwirtsch 21:67-72

    Google Scholar 

  • Finer L (1992) Nutrient concentrations in Pinus sylvestris growing on an ombrotrophic pine bog, and the effects of PK and NPK fertilization. Scand J For Res 7:205-218

    Google Scholar 

  • Finer L (1994) Variation in needle nutrient concentrations in the crown of Scots pine on peatland. Silva Fenn 28:41-51

    Google Scholar 

  • Flanagan PW, Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Can J For Res 13:795–817

    CAS  Google Scholar 

  • Giertych M, Mátyás C (eds) (1991) Genetics of Scots Pine. Developments in plant genetics and breeding 3. Elsevier, Amsterdam

  • Giertych M, Oleksyn J (1992) Studies on genetic variation in Scots pine (Pinus sylvestris L.) coordinated by IUFRO. Silvae Genet 41:133–143

    Google Scholar 

  • Gulder HJ, Kölbel M (1993) Waldbodeninventur in Bayern. Forstl Forsch München 132:1–243

  • Gunia S, Zybura H, Buraczyk W (1991) Needle length and dry matter content compared with tree height of Scots pine (Pinus sylvestris L.) of European provenances in an experimental plantation in central Poland. Ann Warsaw Agric Univ, SGGW-AR. For Wood Technol 41:69–77

    Google Scholar 

  • Haissig BE, Dickson RE (1979) Starch measurement in plant tissue using enzymatic hydrolysis. Physiol Plant 47:151–157

    CAS  Google Scholar 

  • Hansen J, Møller I (1975) Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem 68:87–94

    CAS  PubMed  Google Scholar 

  • Hawkins B, Polglase PJ (2000) Foliar concentrations and resorption of nitrogen and phosphorus in 15 species of eucalyptus grown under non-limited water and nutrient availability. Aust J Bot 48:597–602

    Google Scholar 

  • Heal OW, Block W (1987) Soil biological processes in the North and South. Ecol Bull (Copenh) 38:47–57

    Google Scholar 

  • Heinsdorf D (1966) Über den Ernährungszustand von Kiefernkulturen auf Sandböden in Jahren mit unterschiedlichen Niederschlägen (1961-1963). Arch Forstwes 15:745-773

    Google Scholar 

  • Heinsdorf D (1967) Untersuchungen über die Wirkung mineralischer Düngung auf des Wachstum und den Ernährungszustand von Kiefernkulturen auf Sandböden im nordostdeutschen Tiefland. IV. Trockensubstanzproduktion, Nährstoffmehraufnahme und Nährstoffspeicherung von Kiefernkulturen nach Düngung. Arch Forstwes 16:183-201

    CAS  Google Scholar 

  • Heinsdorf D (1973) Der Einfluss der Jahreswitterung auf den Nährstoffgehalt der Nadeln und das Wachstum ungedüngter Kiefernjungwüchse. Beitr Forstwirtsch 2:75-83

    Google Scholar 

  • Heinsdorf D (1976a) Untersuchungen über die Wirkung mineralischer Düngung auf des Wachstum und den Ernährungszustand von Kiefernkulturen auf verbreiteten Kippbodenformen. Beitr Forstwirtsch 10:185-198

    CAS  Google Scholar 

  • Heinsdorf D (1976b) Zur Kalium-Düngebedürftigkeit von Kiefernbestockungen unterschiedlichen Alters auf Sandböden. Beitr Forstwirtsch 10:205-209

    CAS  Google Scholar 

  • Heinsdorf D (1976c) Feinwurzelentwicklung in Kiefernbestockungen unterschiedlichen Alters nach N-Düngung. Beitr Forstwirtsch 10:199-204

    CAS  Google Scholar 

  • Heinsdorf D (1978) Die Wirkung von zwei NK – Düngefolgen auf Ernährung und Wachstum junger Kiefernbestockungen auf Sandböden im Tiefland der DDR . Beitr Forstwirtsch 2:65-72

    Google Scholar 

  • Heinsdorf D (1982) Ergebnisse eines P-Formen-, P-Steigerungs- und P-Placierungsversuches zu Kiefer (Pinus sylvestris) auf kohlehaltigem Kippsand. Beitr Forstwirtsch 16:76-80

    Google Scholar 

  • Heinsdorf D (1987) Ergebnisse eines Nährstoffmangelversuchs zur Robinie (Robinia pseudoacacia L.) auf Kipprohboden. Beitr Forstwirtsch 21:13-17

    Google Scholar 

  • Heinsdorf D, Lützke R (1976) Auswirkung der Düngung mit Schweinegülle auf die Ernährungssituation und das Wachstum eines Kiefernstangenholzes. Beitr Forstwirtsch 16:111-118

    Google Scholar 

  • Heinze M (1996) Standorte, Ernährung und Wachstum der Schwarzkiefer (Pinus nigra Arnold). Forstwiss Centralbl 115:17-35

    CAS  Google Scholar 

  • Helmisaari HS (1990) Temporal variation in nutrientconcentrations of Pinus sylvestris needles. Scand J For Res 5:177-193

    Google Scholar 

  • Helmisaari HS (1992a) Spatial and age-related variation in nutrient concentrations of Pinus sylvestris needles. Silva Fenn 26:145-153

    Google Scholar 

  • Helmisaari H-S (1992b) Nutrient retranslocation in three Pinus sylvestris stands. For Ecol Manage 51:347–367

    Google Scholar 

  • Henttonen H, Kanninen M, Nygren M, Ojansuu R (1986) The maturation of Pinus sylvestris seeds in relation to temperature climate in northern Finland. Scand J For Res 1:243–249

    Google Scholar 

  • Hippeli P (1976) Zum Problem der optimalen Höhe der Stickstoffdüngung in düngebedürftigen Kiefernbeständen. Beitr Forstwirtsch 10:112-116

    CAS  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Google Scholar 

  • Höhne H, Fiedler HJ (1970) Beitrag zur Stickstoffdüngung mittelalter Kiefernbestände. IV. Nadelanalytische Untersuchungen im 2.-4. Nachwirkungsjahr einer dreijährigen N-Düngung. Arch Forstwes 19:877–898

    Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Jalkanen R, Aalto T, Kurkela T (1995) Development of needle retention in Scots pine (Pinus sylvestris) in 1957-1991 in northern and southern Finland. Trees 10:125-133

    Google Scholar 

  • Johansson M-B (1995) The chemical composition of needle and leaf from Scots pine, Norway spruce and white birch in Scandinavian forests. Forestry 68:49–62

    Google Scholar 

  • Jokela A, Sarjala T, Kaunisto S, Huttunen S (1997) Effects of foliar potassium concentration on morphology, ultrastructure and polyamine concentrations of Scots pine needles. Tree Physiol 17:677-685

    CAS  Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Google Scholar 

  • Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Körner C, Palaez Menendez-Riedl S, John PCL (1989) Why are Bonsai plants small? A consideration of cell size. Aust J Plant Physiol 16:443–448

    Google Scholar 

  • Koshelkov SP (1967) Nutritive regime of the pine stands in the southern taiga (in Russian). Lesovedenie 4:64-70

    Google Scholar 

  • Koshelkov SP, Alekseeva TG (1973) Influence of the soil moisture regime on the accumulation of nutrition elements in Pinus sylvestris L. needles (in Russian). Lesovedenie 5:10-14

    Google Scholar 

  • Krasnikov EL (1976) Foliar analysis of pine plantations on sod-carbonate soils in the Bryansk forest (in Russian). Lesovedenie 3:7-10

    Google Scholar 

  • Kurczynska EU, Dmuchowski W, Wloch W, Bytnerowicz A (1997) The influence of air pollutants on needles and stems of Scots pine (Pinus sylvestris L.) trees. Environ Pollut 98:325-334

    Article  CAS  Google Scholar 

  • Langlet O (1936) Studier över tallens fysiologiska variabilitet och dess samband med klimatet (Study of the physiological variability of pine and its relation to the climate; in Swedish with German summary; Division of Silvics, US Forest Service Translation No. 293, 1937). Medd Stat Skogsförskningsinst 29:421–470

  • Leube F, Höhne, H, Fiedler HJ (1975) Einfluss starker Harnstoffgaben auf Ernährung, Wachstum und Herzertrag eines Kiefernaltbestandes. Beitr Forstwirtsch 15:111-117

    Google Scholar 

  • Lim MT, Cousens JE (1986) The internal transfer of nutrients in Scots pine stand. 2. The pattern of transfer and the effects of nitrogen availability. Forestry 59:17–27

    Google Scholar 

  • Lukina NV, Nikonov VV, Raitio H (1994) Chemical composition of Scots pine needles in the Kola Peninsula (in Russian). Lesovedenie 6:10-21

    Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198

    Google Scholar 

  • Morozov VA, Shimansky PS (1981) Growth and chemical composition of needles in Scotch pine plantations of different density relative to applying fertilizers (in Russian). Lesovedenie 5:3-9

    Google Scholar 

  • Nambiar EKS, Fife DN (1991) Nutrient retranslocation in temperate conifers. Tree Physiol 9:185–207

    CAS  Google Scholar 

  • Nuorteva H, Kurkela T (1993) Effects of crown reduction on needle nutrient status of scleroderris-canker-diseased and green-pruned Scots pine. Can J For Res 23:1169-1178

    CAS  Google Scholar 

  • Oleksyn J (1988) Report on the IUFRO-1982 provenance experiment on Scots pine (Pinus sylvestris L.). Arbor Kornickie 33:211–229

    Google Scholar 

  • Oleksyn J, Tjoelker MG, Reich PB (1992a) Growth and biomass partitioning of populations of European Pinus sylvestris L. under simulated 50° and 60°N daylengths: evidence for photoperiodic ecotypes. New Phytol 120:561–574

    Google Scholar 

  • Oleksyn J, Tjoelker MG, Reich PB (1992b) Whole-plant CO2 exchange of seedlings of two Pinus sylvestris L. provenances grown under simulated photoperiodic conditions of 50° and 60°N. Trees 6:225–231

    Google Scholar 

  • Oleksyn J, Tjoelker MG, Lorenc-Plucinska G, Konwinska A, Zytkowiak R, Karolewski P, Reich PB (1997) Needle CO2 exchange, structure and defense traits in relation to needle age in Pinus heldreichii Christ—a relict of Tertiary flora. Trees 12:82–89

    Article  Google Scholar 

  • Oleksyn J, Modrzynski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and adaptation to cold environment. Funct Ecol 12:573–590

    Article  Google Scholar 

  • Oleksyn J, Reich PB, Chalupka W, Tjoelker MG (1999a) Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scand J For Res 14:7-17

    Article  Google Scholar 

  • Oleksyn J, Reich PB, Karolewski P, Tjoelker MG, Chalupka W (1999b) Nutritional status of pollen and needles of diverse Pinus sylvestris populations grown at sites with contrasting pollution. Water Air Soil Pollut 110:195–212

    Article  CAS  Google Scholar 

  • Oleksyn J, Reich PB, Rachwal L, Tjoelker MG, Karolewski P (2000a) Variation in aboveground net primary production of diverse European Pinus sylvestris populations. Trees 14:415–421

    Article  Google Scholar 

  • Oleksyn J, Zytkowiak R, Karolewski P, Reich PB, Tjoelker MG (2000b) Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. Tree Physiol 20:837–847

    PubMed  Google Scholar 

  • Oleksyn J, Reich PB, Tjoelker MG, Chalupka W (2001) Biogeographic differences in shoot elongation pattern among European Scots pine populations. For Ecol Manage 148:207–220

    Article  Google Scholar 

  • Oleksyn J, Reich PB, Zytkowiak R, Karolewski P, Tjoelker MG (2002) Needle nutrients in geographically diverse Pinus sylvestris populations. Ann For Sci 59:1-18

    Article  Google Scholar 

  • Örlander G., Hallsby G, Sundkwist H (1990) Survival, growth and nutrient status of a 23 year old Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.)Karst.] plantation in a ploughed versus burnt lichen site. Rapp Inst For Skogs Sver Lantbruksuniv 26:1-49

    Google Scholar 

  • Ostman NL, Weaver GT (1982) Autumnal nutrient transfers by retranslocation, leaching and litter fall in a chestnut oak forest in southern Illinois. Can J For Res 12:40–51

    Google Scholar 

  • Patlai IN (1973) Nitrogen, phosphorus, potassium and calcium content in needles of Pinus sylvestris L. of different provenances (in Russian). Lesovedenie 6:18-23

    Google Scholar 

  • Pietiläinen P (1984) Foliar nutrient content and 6-phosphogluconate dehydrogenase activity in vegetative buds of Scots pine on a growth disturbed area. Comm Inst For Fenn 123: 1-18

    Google Scholar 

  • Porgasaar VI (1977) Diagnostika mineral'nogo pitania sosny (in Russian). Agrokhimiia 5:120-127

    Google Scholar 

  • Pravdin LF (1969) Scots pine. Variation, intraspecific taxonomy and selection (translated from Russian by Israel Program of Scientific Translations, Jerusalem). Nauka, Moscow

  • Prus-Glowacki W (1994) Genetic differentiation of Pinus sylvestris L. in Europe. In: Oleksyn J et al (eds) Scots pine breeding and genetics. Proceedings of the IUFRO S. 2.02.18 Symposium. Lithuania 13–17 September 1994. Lithuanian Forest Research Institute, Kaunas/Girionis, pp 63–70

  • Pugnaire FI, Chapin FS (1993) Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74:124–129

    Google Scholar 

  • Raitio H (1987) The significance of the number of needle year classes in interpreting needle analysis results. Silva Fenn 21:11-16

    Google Scholar 

  • Raitio H, Sarjala T (2000) Effect of provenance on free amino acid and chemical composition of Scots pine needles. Planta 221:231–238

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Google Scholar 

  • Reich PB, Ellsworth DS, Uhl C (1995) Leaf carbon and nutrient assimilation and conservation in species of differing successional status in an oligotrophic Amazonian forest. Funct Ecol 9:65–76

    Google Scholar 

  • Reich PB, Oleksyn J, Tjoelker MG (1996a) Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range: a common garden test with field-grown trees. Funct Ecol 10:768–776

    Google Scholar 

  • Reich PB, Oleksyn J, Modrzynski J, Tjoelker MG (1996b) Evidence that longer needle retention of spruce and pine populations at high latitudes is largely a phenotypic response. Tree Physiol 16:643–642

    Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: Global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734

    CAS  PubMed  Google Scholar 

  • Reich PB, Peterson DW, Wedin DA, Wrage K (2001) Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82:1703–1719

    Google Scholar 

  • Reinikainen A, Silfverberg K (1983) Significance of whole-tree nutrient analysis in the diagnosis of growth disorders. Comm Inst For Fenn 116:48-58

    Google Scholar 

  • Repo T, Nilsson J-E, Rikala R, Ryyppö A, Sutinen M-L (2001) Cold hardiness of Scots pine (Pinus sylvestris L.). In: Birgas FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer Academic, Dordrecht, pp 463–493

  • Riedel G (1986) Naturwissenschaftliche und verfahrenstechnische Untersuchungen zum Verwerten von Überschussgülle in düngebedürftigen Kiefernbestockungen. Beitr Forstwirtsch 20:21-27

    Google Scholar 

  • Ritter G, Tölle H (1978) Stickstoffdüngung in Kiefernbeständen und ihre Wirkung auf Mykorrhizabildung und Fruktifikation der Symbiosepilze. Beitr Forstwirtsch 4:162-166

    Google Scholar 

  • Rusanova GV, Sloboda AV, Bushueva EN (1977) Biological turnover of chemical elements in Pinetum cladiniosum of the middle taiga subzone in the Komi ASSR (in Russian). Lesovedenie 2:13-19

    Google Scholar 

  • Ryan DF, Bormann FH (1982) Nutrient resorption in northern hardwood forest. BioScience 32:29–32

    CAS  Google Scholar 

  • Rzeznik Z, Nebe W (1968) Über die Ergebnisse eines 60jährigen Düngungsversuchs von R. Albert in Kotsemke (Choziemek). Arch Forstwes 17:1059-1083

    Google Scholar 

  • Sarvas R (1962) Investigations on the flowering and seed crop of Pinus sylvestris. Comm Inst For Fenn 53:1-198

    Google Scholar 

  • Sauter U (1991) Zeitliche Variationen des Ernährungszustands nordbayerischer Kiefernbestände. Forstwiss Centralbl 110:13-33

    Google Scholar 

  • Shutyaev AM, Giertych M (2000) Genetic subdivisions of the range of Scots pine (Pinus sylvestris L.) based on a transcontinental provenance experiment. Silvae Genet 49:137–151

    Google Scholar 

  • Sikström U (1997) Effects of low-dose liming and nitrogen fertilization on stemwood growth and needle properties of Picea abies and Pinus sylvestris. For Ecol Manage 95:261-274

    Google Scholar 

  • Silfverberg K, Hartman M (1999) Effects of different phosphorus fertilisers on the nutrient status and growth of Scots pine stands on drained peatlands. Silva Fenn 33:187-206

    Google Scholar 

  • Skoudene L (1997) A10 National Report: LT. In: Forest foliar conditions in Europe. UN Economic Commission for Europe, European Commission. EC-UN/ECE-FBVA, Brussels, pp 111-112

  • Staaf H, Stjernquist I (1986) Seasonal dynamics, especially autumnal retranslocation, of nitrogen and phosphorus in foliage of dominant and suppressed trees of beech, Fagus sylvatica. Scand J For Res 1:333–342

    Google Scholar 

  • Stefan K, Fürst A, Hacker R, Bartels U (1997) Forest foliar conditions in Europe. EC, UN/ECE, Austrian Federal Research Centre, Vienna

  • Steven HM, Carlisle A (1959) The native pinewoods of Scotland. Oliver and Boyd, Edinburgh

  • Stump LM, Binkley D (1993) Relationships between litter quality and nitrogen availability in Rocky Mountain forests. Can J For Res 23:492–502

    CAS  Google Scholar 

  • Sylven N (1916/1917) Den nordsvenska tallen. Medd Stat Skogsförskningsinst 13-14:783-884

  • Tamm CO (1955) Studies on forest nutrition. I. Seasonal variation in the nutrient content of conifer needles. Medd Stat Skogsforskningsinst 45:1-34

    Google Scholar 

  • Tölle H, Hofmann G (1970) Beziehungen zwischen Bodenvegetation, Ernährung und Wachstum mittelalter Kiefernbestände im nordostdeutschen Tiefland. Arch Forstwes 19:385-400

    Google Scholar 

  • Treseder KK, Vitousek PM (2001) Potential ecosystem-level effects of genetic variation among populations of Metrosideros polymorpha from a soil fertility gradient in Hawaii. Oecologia 126:266–275

    Article  Google Scholar 

  • Trillmich H-D, Uebel E (1982) Ergebnisse eines Roteichenvoranbaues unter einem 65jährigen Kiefernbestand bei gleichzeitiger mineralischer Düngung. Beitr Forstwirtsch 16:34-39

    CAS  Google Scholar 

  • Troeng E, Linder S (1982) Gas exchange in a 20-year-old stand of Scots pine. Physiol Plant 54:15-23

    CAS  Google Scholar 

  • Tullus HH (1991) Lifetime of Scots pine needles in Estonia (in Russian). Lesovedenie 4:89-92

    Google Scholar 

  • Vucetich JA, Reed DD, Breymeyer A, Degorski M, Mroz GD, Solon J, Roo-Zielinska E, Noble R (2000) Carbon pools and ecosystem properties along a latitudinal gradient in northern Scots pine (Pinus sylvestris) forests. For Ecol Manage 136:135–145

    Article  Google Scholar 

  • Vuorinen M, Kurkela T (2000) Lophodermella sulcigena infection in Scots pine needles and tree nutrition. Forestry 73:239-246

    Google Scholar 

  • Wehrmann J (1961) Die Auswirkung der Trockenheit von 1959 auf die Nährelementversorgung bayerischer Kiefernbestände. Forstwiss Centralbl 80:272-287

    CAS  Google Scholar 

  • Weih M, Karlsson PS (2001) Growth response of mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytol 150:147–155

    Google Scholar 

  • Wright J W (1976) Introduction to forest genetics. Academic Press, New York

  • Wright TW, Will GM (1958) The nutrient content of Scots and Corsican pines growing on sand dunes. Forestry 31:13-25

    CAS  Google Scholar 

Download references

Acknowledgements

This study was made possible by support from the State Committee for Scientific Research (Poland) grant 6 PO4F 001 17 and the U.S. National Science Foundation (IBN-9630241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Oleksyn.

Appendices

Appendix 1

Average N and P concentration (mg g-1) in mature green foliage (3–24 months old) of different Scots pine (Pinus sylvestris L.) stands within species' continuous range in Europe

See text for additional information. (FI, Finland; SE, Sweden; RU, Russian Federation; EE, Estonia; LT, Lithuania; DE, Germany; PL, Poland; BY, Belarus; UA, Ukraine; CZ, Czech Republic; HU, Hungary. 1, Average of different crown height; 2, Average for different crown or branch position; 3, seed orchard; 4, average of multiple stands; 5, average of stands sampled in different years; 6, Stand on silicate substrate; 7, Stand on carbonate substrate)

Country and remarks

Lat. (N)

Long. (E)

Mean annual temperature (°C)

N (mg g-1)

P (mg g-1)

Stand or tree age (years)

Source

FI

65.87

26.12

1.1

13.6

0.9

50

Pietiläinen (1984)

FI

64.97

26.40

1.1

10.3

1.3

70

Vuorinen et al. (2000)

FI

64.79

26.79

1.0

11.8

1.5

20

Silfverberg et al. (1999)

SE

63.67

17.97

3.8

10.8

1.4

23

Örlander et al. (1990)

FI

63.51

26.59

3.1

14.0

1.6

22

Reinikainen et al. (1983)

FI

63.35

19.32

2.3

11.5

1.6

45

Silfverberg et al. (1999)

FI, 1

62.85

30.88

2.2

14.9

1.6

50

Finer (1994)

FI, 1

62.85

30.88

2.2

14.2

1.1

50

Finer (1994)

FI

62.78

30.97

2.0

11.5

1.3

100

Helmisaari (1990)

FI

62.78

30.97

2.0

10.9

1.1

15

Helmisaari (1990)

FI

62.78

30.97

2.0

11.1

1.1

35

Helmisaari (1990)

FI, 2

62.78

30.97

2.0

11.0

1.1

35

Helmisaari (1992a)

FI, 2

62.78

30.97

2.0

10.0

1.0

100

Helmisaari (1992a)

FI

62.78

30.97

2.0

11.2

1.1

15

Helmisaari (1992a)

FI

62.23

20.83

3.7

11.3

1.3

85

Finer (1992)

FI, 1

62.23

30.83

2.4

12.2

1.2

85

Finer (1994)

FI

62.20

25.23

2.7

15.4

1.1

35

Silfverberg et al. (1999)

FI

62.12

22.18

3.7

13.6

1.5

13

Reinikainen et al. (1983)

FI

62.06

25.29

2.7

12.3

1.3

65

Silfverberg et al. (1999)

FI

61.92

23.73

3.8

12.5

1.6

30

Jokela et al. (1997)

FI

61.78

20.73

3.6

13.2

1.5

20

Raitio (1987)

RU

61.70

50.90

0.2

10.5

2.1

Rusanova et al. (1977)

FI, 3

61.57

26.30

2.6

16.0

1.6

Lukina et al. (1994)

FI

61.50

24.00

3.6

11.1

1.7

20

Nuorteva et al. (1993)

FI

61.18

21.97

4.0

14.4

1.4

40

Silfverberg et al. (1999)

SE, 2

60.82

16.50

4.9

9.7

20

Troeng et al. (1982)

FI

60.44

24.29

4.3

12.1

1.1

13

Silfverberg et al. (1999)

SE, 2

59.87

18.92

5.8

14.3

1.5

Tamm (1955)

RU, 4

58.26

84.45

4.3

12.3

1.6

8

Koshelkov et al. (1973)

RU

58.26

84.45

4.3

16.1

2.2

Koschelkov (1967)

RU

58.26

84.45

4.3

13.1

1.8

Koschelkov (1967)

RU, 4

58.26

84.45

4.3

13.2

1.8

Koschelkov (1967)

RU, 4

58.26

84.45

4.3

11.8

1.6

Koschelkov (1967)

RU, 4

58.26

84.45

4.3

11.5

1.5

Koschelkov (1967)

RU, 4

58.26

84.45

4.3

10.6

1.4

Koschelkov (1967)

RU, 4

58.26

84.45

4.3

9.7

1.4

Koschelkov (1967)

EE, 4

58.00

27.00

5.5

16.4

1.7

Porgasaar (1977)

UK, 2

57.58

-3.87

8.0

13.3

1.5

64

Wright et al. (1958)

UK

57.58

-3.87

8.0

10.6

1.2

18

Wright et al. (1958)

UK

57.58

-3.87

8.0

14.6

1.9

28

Wright et al. (1958)

UK

57.58

-3.87

8.0

14.2

1.5

64

Wright et al. (1958)

SE, 5

57.17

14.83

5.8

12.7

1.5

30

Sikström (1997)

LT

54.88

6.5

13.1

1.8

Stefan et al. (1997)

LT, 4

54.88

6.5

11.9

1.2

Skoudene (1997)

DE, 5

53.68

13.85

8.5

16.2

1.7

5–15

Heinsdorf (1973)

RU

53.33

34.20

5.3

11.0

1.7

Krasnikov (1976)

PL

53.20

23.37

6.7

15.2

1.4

15

Oleksyn et al. (unpublished data)

DE, 5

53.12

13.50

8.7

14.6

1.6

70

Trillmich et al. (1982)

DE

52.92

13.87

8.7

10.9

1.3

7

Heinsdorf (1976c)

DE

52.92

13.87

8.7

11.0

1.3

14

Heinsdorf (1976c)

DE

52.92

13.87

8.7

13.0

1.6

33

Heinsdorf (1976c)

DE

52.92

13.87

8.7

14.4

1.7

47

Heinsdorf (1976c)

DE

52.92

13.87

8.7

14.5

1.6

85

Heinsdorf (1976c)

DE

52.87

13.40

8.5

16.5

1.7

5

Heinsdorf (1966)

DE

52.87

13.40

8.5

16.6

1.6

6

Heinsdorf (1966)

DE, 5

52.87

13.75

8.7

16.2

1.6

42–46

Heinsdorf et al. (1976)

DE

52.83

13.88

8.9

14.9

1.4

35

Ritter et al. (1978)

DE

52.83

13.88

8.3

14.3

1.4

55

Riedel (1986)

DE

52.83

13.88

8.3

13.1

1.4

40

Hippeli (1976)

DE

52.66

13.73

8.5

15.8

1.6

5

Heinsdorf (1966)

DE

52.66

13.73

8.5

14.9

1.6

6

Heinsdorf (1966)

DE, 4

52.41

13.50

8.5

15.1

57

Tölle et al. (1970)

DE

52.36

14.07

8.5

13.1

1.5

5

Heinsdorf (1966)

DE

52.36

14.07

8.5

15.2

1.7

6

Heinsdorf (1966)

DE

52.36

14.07

8.5

13.1

1.4

6

Heinsdorf (1967)

DE

52.36

14.07

8.5

11.2

1.2

6

Heinsdorf (1967)

PL

52.35

20.30

7.5

15.9

1.7

Kurczynska et al. (1997)

PL, 5

52.30

23.85

6.2

13.8

1.4

Unpublished data of the Forest Research Institute in Warsaw

PL

52.25

17.07

7.7

11.5

1.3

11–15

Oleksyn et al. (unpublished data)

PL

52.25

17.07

7.7

12.6

1.8

29

Oleksyn et al. (unpublished data)

BY, 4

52.25

31.00

7.1

15.1

1.5

8–10

Morozov et al. (1981)

DE, 5

52.23

12.17

8.5

12.3

1.3

5–15

Heinsdorf (1973)

DE, 5

52.23

12.17

8.5

12.0

15–19

Heinsdorf (1978)

DE

52.23

12.17

8.5

12.7

1.3

5

Heinsdorf (1976b)

DE, 5

52.22

12.85

8.5

13.4

1.4

5–11

Heinsdorf (1973)

DE

52.20

12.77

8.5

12.6

1.3

5–6

Heinsdorf (1966)

DE

52.20

12.77

8.5

10.6

1.1

6

Heinsdorf (1967)

PL

52.17

20.90

7.5

16.7

1.7

Kurczynska et al. (1997)

DE, 5

52.05

13.60

8.5

11.0

1.2

6–16

Heinsdorf (1973)

DE

52.00

13.00

8.5

13.5

1.5

5–6

Heinsdorf (1973)

DE, 5

51.95

13.23

8.5

11.8

1.3

6–15

Heinsdorf (1973)

DE

51.95

13.23

8.5

12.3

1.5

5–6

Heinsdorf (1966)

DE

51.95

13.23

8.5

10.1

1.2

6

Heinsdorf (1967)

DE

51.90

13.22

8.5

12.3

1.3

5–14

Heinsdorf (1973)

DE

51.90

13.22

8.5

13.4

15–18

Heinsdorf (1978)

DE

51.87

13.43

8.5

17.1

1.8

5–6

Heinsdorf (1966)

DE

51.87

13.43

8.5

13.3

1.5

5–6

Heinsdorf (1967)

PL

51.80

14.97

8.0

12.0

1.4

60

Rzeznik et al. (1968)

DE

51.62

14.02

8.4

13.2

1.3

6–7

Heinsdorf (1976a)

DE

51.55

14.10

8.4

18.0

1.3

5–6

Heinsdorf (1976a)

DE

51.50

13.80

8.4

11.6

1.1

6–7

Heinsdorf (1976a)

DE

51.41

14.25

7.9

13.7

1.4

7

Heinsdorf (1987)

DE

51.40

12.88

8.5

17.1

2.0

37

Czerney et al. (1969)

DE

51.40

12.88

8.5

18.3

1.7

39

Czerney et al. (1969)

DE

51.40

12.88

8.5

17.8

1.8

52

Czerney et al. (1969)

DE

51.40

12.88

8.5

18.1

1.8

56

Czerney et al. (1969)

DE

51.40

12.88

8.5

17.8

1.8

63

Czerney et al. (1969)

DE

51.40

12.88

8.5

17.9

1.8

77

Czerney et al. (1969)

DE

51.40

12.88

8.5

16.1

1.7

88

Czerney et al. (1969)

DE

51.40

12.88

8.5

16.0

1.6

97

Czerney et al. (1969)

DE

51.40

12.88

8.5

17.6

1.4

108

Czerney et al. (1969)

DE

51.40

12.88

8.5

16.7

1.7

118

Czerney et al. (1969)

DE

51.40

13.90

9.1

13.5

1.5

50

Höhne et al. (1970)

DE, 5

51.40

14.00

8.5

10.7

1.1

7–11

Heinsdorf (1982)

DE

51.37

14.52

8.4

14.0

1.4

5–6

Heinsdorf (1976a)

DE

51.32

14.33

9.1

13.8

1.5

9

Fiedler et al. (1967)

DE

51.32

14.33

9.1

14.8

1.3

15

Fiedler et al. (1967)

DE

51.32

14.33

9.1

14.8

1.3

29

Fiedler et al. (1967)

DE

51.32

14.33

9.1

15.5

1.2

41

Fiedler et al. (1967)

DE

51.32

14.33

9.1

16.3

1.2

52

Fiedler et al. (1967)

DE

51.32

14.33

9.1

15.3

1.5

78

Fiedler et al. (1967)

DE

51.32

14.33

9.1

14.8

1.5

89

Fiedler et al. (1967)

DE

51.32

14.33

9.1

12.7

1.3

9

Fiedler et al. (1967)

DE

51.32

14.33

9.1

12.8

1.2

15

Fiedler et al. (1967)

DE

51.32

14.33

9.1

14.8

1.2

29

Fiedler et al. (1967)

DE

51.32

14.33

9.1

15.3

1.0

41

Fiedler et al. (1967)

DE

51.32

14.33

9.1

17.4

1.1

52

Fiedler et al. (1967)

DE

51.32

14.33

9.1

14.4

1.3

78

Fiedler et al. (1967)

DE

51.32

14.33

9.1

14.5

1.4

98

Fiedler et al. (1967)

DE

51.30

14.33

8.6

14.7

1.6

105

Leube et al. (1975)

DE, 5

51.30

14.45

8.5

13.3

1.5

6–16

Fiedler et al. (1970)

DE

51.28

12.98

7.3

16.1

1.6

24

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.5

1.8

33

Czerney et al. (1969)

DE

51.28

12.98

7.3

19.1

1.6

37

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.7

1.7

41

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.6

1.6

47

Czerney et al. (1969)

DE

51.28

12.98

7.3

19.8

1.4

44

Czerney et al. (1969)

DE

51.28

12.98

7.3

21.3

1.4

47

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.6

1.6

50

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.6

1.4

60

Czerney et al. (1969)

DE

51.28

12.98

7.3

19.3

1.7

61

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.0

1.7

65

Czerney et al. (1969)

DE

51.28

12.98

7.3

19.8

1.5

65

Czerney et al. (1969)

DE

51.28

12.98

7.3

19.9

1.5

69

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.6

1.4

77

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.0

1.4

80

Czerney et al. (1969)

DE

51.28

12.98

7.3

19.2

1.3

82

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.6

1.4

100

Czerney et al. (1969)

DE

51.28

12.98

7.3

15.6

1.1

87

Czerney et al. (1969)

DE

51.28

12.98

7.3

18.0

1.4

97

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.8

1.5

118

Czerney et al. (1969)

DE

51.28

12.98

7.3

16.5

1.1

111

Czerney et al. (1969)

DE

51.28

12.98

7.3

16.9

1.6

121

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.6

1.2

122

Czerney et al. (1969)

DE

51.28

12.98

7.3

17.6

1.6

10

Czerney et al. (1969)

DE

51.28

14.42

9.1

13.3

1.5

97

Fiedler et al. (1967)

DE

51.27

14.33

9.1

15.0

1.4

107

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.5

1.4

10

Fiedler et al. (1967)

DE

51.27

14.33

9.1

14.4

1.4

17

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.4

1.5

27

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.9

1.5

41

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.8

1.5

50

Fiedler et al. (1967)

DE

51.27

14.33

9.1

13.2

1.5

61

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.7

1.5

81

Fiedler et al. (1967)

DE

51.27

14.33

9.1

13.7

1.4

110

Fiedler et al. (1967)

DE

51.27

14.33

9.1

15.2

1.3

107

Fiedler et al. (1967)

DE

51.27

14.33

9.1

11.1

1.2

10

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.4

1.4

17

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.4

1.6

27

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.1

1.5

41

Fiedler et al. (1967)

DE

51.27

14.33

9.1

11.4

1.4

50

Fiedler et al. (1967)

DE

51.27

14.33

9.1

12.4

1.5

61

Fiedler et al. (1967)

DE

51.27

14.33

9.1

13.8

1.6

81

Fiedler et al. (1967)

DE

51.27

14.33

9.1

14.4

1.5

110

Fiedler et al. (1967)

PL

51.23

18.17

7.5

13.2

0.9

29

Oleksyn et al. (unpublished data)

DE

50.90

11.60

8.7

15.0

1.6

12–13

Fiedler et al. (1987)

DE

50.77

11.63

8.0

13.5

0.8

77

Fiedler et al. (1969)

DE

50.77

11.63

8.0

14.5

1.0

58

Fiedler et al. (1969)

DE

50.77

11.63

8.0

15.8

1.0

72

Fiedler et al. (1969)

UA

50.55

48.35

7.1

16.3

1.4

40

Patlai (1973)

UA

50.55

48.35

7.1

15.6

1.7

5

Patlai (1973)

PL

50.03

20.37

7.7

12.4

1.5

15

Oleksyn et al. (unpublished data)

DE

50.00

8.69

9.8

17.9

1.2

100

Busch et al. (1997)

DE

50.00

12.30

7.1

14.3

1.6

111

Sauter (1991)

DE

50.00

12.30

7.1

14.2

1.6

80

Sauter (1991)

DE

50.00

12.30

7.1

15.0

1.6

81

Sauter (1991)

RU

49.93

36.28

6.9

16.3

1.4

40

Patlai (1973)

DE

49.77

11.93

8.0

13.3

1.4

86

Sauter (1991)

DE

49.75

11.55

8.0

14.0

1.5

70

Sauter (1991)

DE

49.65

14.08

7.9

16.0

1.5

15

Oleksyn et al. (unpublished data)

DE, 4

49.40

11.00

8.6

15.2

1.4

Gulder et al. (1993)

DE

49.26

12.32

8.0

13.5

1.6

62

Sauter (1991)

DE

49.26

12.32

8.0

13.4

1.5

70

Sauter (1991)

DE

49.26

12.32

8.0

13.9

1.5

100

Sauter (1991)

DE

49.20

12.03

8.0

14.3

1.4

105

Sauter (1991)

CZ, 6

49.10

17.57

8.9

14.7

1.4

85

Heinze (1996)

CZ, 7

49.10

17.57

8.9

17.4

1.6

85

Heinze (1996)

DE

49.03

10.98

7.6

13.2

1.5

89

Sauter (1991)

DE, 4, 5

49.00

11.00

7.6

14.1

1.4

40

Wehrmann (1961)

HU, 6

47.68

16.16

10.3

14.0

1.7

85

Heinze (1996)

HU, 7

47.68

16.16

10.3

14.5

1.4

85

Heinze (1996)

HU, 6

47.55

17.75

10.4

20.7

1.2

85

Heinze (1996)

HU, 6

47.45

17.03

9.7

17.8

1.4

85

Heinze (1996)

HU, 7

46.77

17.25

10.0

15.1

1.5

85

Heinze (1996)

HU, 6

46.68

19.68

10.8

16.3

1.6

10

Heinze (1996)

Appendix 2

Needle longevity (years) in different Scots pine (Pinus sylvestris L.) stands within species' continuous range in Europe

See text for additional information. [FI, Finland; SE, Sweden; RU, Russian Federation; EE, Estonia; PL, Poland; UA, Ukraine; GB, Great Britain. Lat, latitude (in decimal values); Long, longitude; Alt, altitude; M.a.t., mean annual temperature. Growing season length was calculated as the number of days with mean temperature ≥5°C]

Location (country)

Lat (N)

Long (E)

Alt (m)

M.a.t. (°C)

Growing season (days)

Needle longevity (years)

Reference

Murmansk (RU)

68.97

33.04

46

0.2

126

7.0

Pravdin (1969)

Jukkasjärvi (FI)

68.00

20.61

320

−1.5

111

7.4

Sylven (1916/1917)

Lokka (FI)

67.77

27.75

255

−0.7

126

5.7

Jalkanen et al. (1995)

Ainijärvi (FI)

67.75

29.48

265

−0.9

125

5.8

Jalkanen et al. (1995)

Särkijärvi (FI)

67.72

23.83

280

−1.3

128

6.2

Jalkanen et al. (1995)

Nuttio (FI)

67.67

25.97

220

−0.7

126

6.0

Jalkanen et al. (1995)

Aska (FI)

67.27

26.72

175

−0.7

126

6.0

Jalkanen et al. (1995)

Sätsi (FI)

67.25

29.22

225

−0.8

127

6.4

Jalkanen et al. (1995)

Pajala (SE)

67.22

23.40

168

0.5

137

5.8

Sylven (1916/1917)

Kalix (SE)

66.85

23.13

11

0.2

141

5.6

Sylven (1916/1917)

Ängesa (SE)

66.73

22.30

182

0.8

142

6.5

Sylven (1916/1917)

Raneträsk (SE)

66.70

20.00

263

−0.7

126

7.2

Sylven (1916/1917)

Pärlälven (SE)

66.70

18.40

−1.2

127

7.8

Sylven (1916/1917)

Kulveikonvaara (FI)

66.70

27.82

255

−0.7

133

5.5

Jalkanen et al. (1995)

Jockmock (SE)

66.59

19.89

255

−1.2

127

8.0

Sylven (1916/1917)

Kaarnijärvi (FI)

66.45

26.80

200

0.4

138

6.0

Jalkanen et al. (1995)

Storbacken (SE)

66.38

20.71

43

−1.2

126

7.4

Sylven (1916/1917)

Tennilä (FI)

66.38

26.48

135

0.4

137

5.2

Jalkanen et al. (1995)

Arjeplog (SE)

66.03

17.80

430

0.6

134

6.2

Sylven (1916/1917)

Malmesjaur (SE)

66.03

19.17

−1.2

127

6.4

Sylven (1916/1917)

Ranea (SE)

66.00

22.30

11

1.3

142

5.4

Sylven (1916/1917)

Vargisa (SE)

65.88

20.32

104

−1.2

127

7.2

Sylven (1916/1917)

Tornaea (SE)

65.83

24.13

3

1.0

138

5.2

Sylven (1916/1917)

Sivakkavaara (FI)

65.80

24.67

35

1.3

138

4.5

Jalkanen et al. (1995)

Arvidsjaur (SE)

65.58

19.17

378

−1.2

127

6.8

Sylven (1916/1917)

Övre Byske (SE)

65.40

19.72

−1.2

127

6.6

Sylven (1916/1917)

Älvsby (SE)

65.30

18.55

17

0.3

138

5.6

Sylven (1916/1917)

Stensele (SE)

65.09

17.20

327

0.3

118

6.2

Sylven (1916/1917)

Jörn (SE)

65.03

20.15

296

−1.3

118

6.4

Sylven (1916/1917)

Norsjö (SE)

64.92

19.48

300

3.1

159

5.6

Sylven (1916/1917)

Frostviken (SE)

64.65

13.77

337

2.0

148

5.4

Sylven (1916/1917)

Vilhelmina (SE)

64.62

16.65

341

1.1

144

5.6

Sylven (1916/1917)

S. Lycksele (SE)

64.60

18.67

223

1.2

144

5.6

Sylven (1916/1917)

Burträsk (SE)

64.52

20.65

81

2.4

160

6.0

Sylven (1916/1917)

Tasjö (SE)

64.22

15.90

248

0.9

144

5.7

Sylven (1916/1917)

Degerfors (SE)

64.20

19.72

217

2.5

159

5.0

Sylven (1916/1917)

Asele (SE)

64.17

17.33

312

1.0

144

5.4

Sylven (1916/1917)

Fredrika (SE)

64.08

18.40

293

1.1

144

5.8

Sylven (1916/1917)

Anundsjö (SE)

63.43

18.15

123

3.5

162

6.4

Sylven (1916/1917)

Are (SE)

63.40

13.07

371

1.7

156

6.0

Sylven (1916/1917)

Bräcke (SE)

63.38

14.00

295

2.5

156

5.8

Sylven (1916/1917)

Hallen (SE)

63.37

13.45

386

1.7

139

5.4

Sylven (1916/1917)

Östersund (SE)

63.18

14.50

367

2.5

154

6.0

Sylven (1916/1917)

Junsele (SE)

62.83

16.90

195

3.4

168

5.9

Sylven (1916/1917)

Härnösand (SE)

62.60

18.00

8

3.5

161

5.5

Sylven (1916/1917)

Medelpad (SE)

62.53

17.39

4

3.4

163

5.4

Sylven (1916/1917)

Rätan (SE)

62.47

14.55

351

2.4

159

5.6

Sylven (1916/1917)

Hede (SE)

62.41

13.50

439

0.5

140

8.0

Sylven (1916/1917)

Västra (SE)

62.40

14.00

2.4

159

5.0

Sylven (1916/1917)

Kaltila (FI)

62.00

24.10

110

2.6

160

4.3

Jalkanen et al. (1995)

Norra (SE)

61.83

14.00

2.4

158

5.0

Sylven (1916/1917)

Karelya (RU)

61.82

34.27

110

2.5

159

6.0

Bobkova et al. (1999)

Ranta-Halola (FI)

61.80

29.33

90

2.8

163

4.4

Jalkanen et al. (1995)

Särna (SE)

61.70

13.10

437

1.5

150

6.0

Sylven (1916/1917)

Vesijako (FI)

61.33

28.05

130

3.6

172

4.0

Jalkanen et al. (1995)

Österdalarna (SE)

61.28

14.55

0.9

175

5.2

Sylven (1916/1917)

Piikajärvi (FI)

61.27

22.18

45

3.6

170

4.1

Jalkanen et al. (1995)

Gästrikland (SE)

61.20

16.80

4.5

179

4.1

Sylven (1916/1917)

Transtrand (SE)

61.08

13.32

368

1.5

150

6.8

Sylven (1916/1917)

Ojajoki (FI)

60.67

24.35

130

4.5

173

3.9

Jalkanen et al. (1995)

Grönbo (SE)

60.60

15.47

215

4.9

183

3.0

Sylven (1916/1917)

Halkivaha (FI)

60.60

24.40

120

4.5

173

3.8

Jalkanen et al. (1995)

Kaksoiskivi (FI)

60.60

24.52

120

4.5

173

4.0

Jalkanen et al. (1995)

Torpparinmäki (FI)

60.53

26.45

30

4.5

175

4.2

Jalkanen et al. (1995)

Ruotsinkylä (FI)

60.35

24.95

60

4.3

171

4.1

Jalkanen et al. (1995)

Kopparberg (SE)

60.25

14.98

229

4.9

183

4.0

Sylven (1916/1917)

N Roslag (SE)

60.25

17.40

5.8

189

3.0

Sylven (1916/1917)

Örbyhus (SE)

60.23

17.70

21

5.9

189

3.5

Sylven (1916/1917)

Västerdalarna (SE)

60.17

14.50

5.8

183

4.8

Sylven (1916/1917)

Solböle (FI)

60.03

23.03

40

3.8

171

4.0

Jalkanen et al. (1995)

Kloten (SE)

59.90

15.28

263

5.4

180

3.2

Sylven (1916/1917)

Arvika (SE)

59.67

12.63

74

5.4

188

3.8

Sylven (1916/1917)

Västeras (SE)

59.58

16.60

6

5.9

194

3.0

Sylven (1916/1917)

Enköping (SE)

59.50

17.07

10

6.0

194

3.2

Sylven (1916/1917)

Älvdal (SE)

59.40

13.50

5.6

188

4.4

Sylven (1916/1917)

Karlstad (SE)

59.40

13.50

55

5.6

188

3.8

Sylven (1916/1917)

Örebro (SE)

59.30

15.20

33

5.4

185

3.0

Sylven (1916/1917)

Askersund (SE)

59.00

14.80

175

6.1

183

3.0

Sylven (1916/1917)

Tartu (EE)

58.30

26.70

5.5

191

2.5

Tullus (1991)

Northern (GB)

57.86

−4.79

203

6.7

196

3.4

Steven et al. (1959)

Wester Ross (GB)

57.55

−5.42

210

6.8

196

3.3

Steven et al. (1959)

Strath Glass (GB)

57.31

−4.91

301

6.1

191

3.2

Steven et al. (1959)

Speyside (GB)

57.16

−3.72

369

6.1

190

3.9

Steven et al. (1959)

Deeside (GB)

57.00

−3.10

325

6.4

190

3.8

Steven et al. (1959)

Great Glen (GB)

56.99

−5.11

305

7.0

238

3.5

Steven et al. (1959)

Moskovsk. obl. (RU)

56.80

37.00

100

3.8

178

6.0

Bobkova et al. (1999)

Rannoch (GB)

56.63

-4.33

294

6.7

238

3.9

Steven et al. (1959)

Southern (GB)

56.48

-4.79

252

7.2

235

3.0

Steven et al. (1959)

Moskovsk. obl. (RU)

55.80

37.60

156

4.2

178

5.0

Bobkova et al. (1999)

Bryansk. obl. (RU)

53.33

34.22

162

4.9

185

2.0

Bobkova et al. (1999)

Kornik (PL)

52.25

17.07

70

7.7

220

2.6

Reich et al. (1996a)

Lvov (UA)

49.80

24.00

325

7.3

210

3.0

Pravdin (1969)

Lvov (UA)

49.80

24.00

325

7.3

210

3.0

Pravdin (1969)

Lvov (UA)

49.80

24.00

325

7.3

210

3.0

Pravdin (1969)

Lvov (UA)

49.80

24.00

325

7.3

210

3.0

Pravdin (1969)

Lvov (UA)

49.80

24.00

325

7.3

210

3.0

Pravdin (1969)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleksyn, J., Reich, P.B., Zytkowiak, R. et al. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations. Oecologia 136, 220–235 (2003). https://doi.org/10.1007/s00442-003-1265-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-003-1265-9

Keywords

Navigation