Skip to main content

Advertisement

Log in

BBS4 protein has basal body/ciliary localization in sensory organs but extra-ciliary localization in oligodendrocytes during human development

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Bardet-Biedl syndrome protein 4 (BBS4) localization has been studied in human embryos/fetuses from Carnegie stage 15 to 37 gestational weeks in neurosensory organs and brain, underlying the major clinical signs of BBS. We observed a correlation between the differentiation of the neurosensory cells (hair cells, photoreceptors, olfactory neurons) and the presence of a punctate BBS4 immunostaining in their apical cytoplasm. In the brain, BBS4 was localized in oligodendrocytes and myelinated tracts. In individual myelinated fibers, BBS4 immunolabelling was discontinuous, predominantly at the periphery of the myelin sheath. BBS4 immunolabelling was confirmed in postnatal developing white matter tracts in mouse as well as in mouse oligodendrocytes cultures. In neuroblasts/neurons, BBS4 was only present in reelin-expressing Cajal-Retzius cells. Our results show that BBS4, a protein of the BBSome, has both basal body/ciliary localization in neurosensory organs but extra-ciliary localization in oligodendrocytes. The presence of BBS4 in developing oligodendrocytes and myelin described in the present paper might attribute a new role to this protein, requiring further investigation in the field of myelin formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

c c :

Corpus cllosum

a c :

Anterior commisure

References

  • Agassandian K, Patel M, Agassandian M et al (2014) Ciliopathy is differentially distributed in the brain of a Bardet-Biedl syndrome mouse model. PLoS One 9:e93484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antal MC, Bénardais K, Samama B et al (2017) Adenylate cyclase type III is not a ubiquitous marker for all primary cilia during development. PLoS One 12:e0170756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker K, Northam GB, Chong WK et al (2011) Neocortical and hippocampal volume loss in a human ciliopathy: a quantitative MRI study in Bardet-Biedl syndrome. Am J Med Genet A 155A:1–8

    Article  PubMed  Google Scholar 

  • Barateiro A, Fernandes A (2014) Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 1843:1917–1929

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (2002) Atlas of human central nervous system development. CRC Press, Boca Raton

    Google Scholar 

  • Berbari NF, Bishop GA, Askwith CC et al (2007) Hippocampal neurons possess primary cilia in culture. J Neurosci Res 85:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Bishop GA, Berbari NF, Lewis J, Mykytyn K (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505:562–571

    Article  PubMed  Google Scholar 

  • Boehm N, Roos J, Gasser B (1994) Luteinizing hormone-releasing hormone (LHRH)-expressing cells in the nasal septum of human fetuses. Brain Res Dev Brain Res 82:175–180

    Article  CAS  PubMed  Google Scholar 

  • Braun J-J, Noblet V, Durand M et al (2014) Olfaction evaluation and correlation with brain atrophy in Bardet-Biedl syndrome. Clin Genet 86:521–529

    Article  CAS  PubMed  Google Scholar 

  • Braun JJ, Noblet V, Kremer S et al (2016) Value of MRI olfactory bulb evaluation in the assessment of olfactory dysfunction in Bardet-Biedl syndrome. Clin Genet 90:79–83

    Article  CAS  PubMed  Google Scholar 

  • Brinckman DD, Keppler-Noreuil KM, Blumhorst C et al (2013) Cognitive, sensory, and psychosocial characteristics in patients with Bardet-Biedl syndrome. Am J Med Genet A 161A:2964–2971

    Article  PubMed  Google Scholar 

  • Carter CS, Vogel TW, Zhang Q, Seo S, Swiderski RE, Moninger TO et al (2012) Abnormal development of NG2+PDGFR-α+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med 18(12):1797–1804. https://doi.org/10.1038/nm.2996

  • Chen RH (1990) Ultrastructural studies of visual cells in the human fetus. Zhonghua Yan Ke Za Zhi Chin J Ophthalmol 26:102–104

    CAS  Google Scholar 

  • Christensen ST, Morthorst SK, Mogensen JB, Pedersen LB (2017) Primary cilia and coordination of receptor tyrosine kinase (RTK) and transforming growth factor β (TGF-β) signaling. Cold Spring Harb Perspect Biol 9

  • Davis RE, Swiderski RE, Rahmouni K et al (2007) A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc Natl Acad Sci U S A 104:19422–19427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de StGroth SF, Scheidegger D (1980) Production of monoclonal antibodies: strategy and tactics. J Immunol Methods 35:1–21

    Article  PubMed  Google Scholar 

  • Dechesne CJ, Escudero P, Lamande N et al (1987) Immunohistochemical identification of neuron-specific enolase and calbindin in the vestibular receptors of human fetuses. Acta Oto-Laryngol Suppl 436:69–75

    Article  CAS  Google Scholar 

  • Dechesne CJ, Sans A (1985) Development of vestibular receptor surfaces in human fetuses. Am J Otolaryngol 6:378–387

    Article  CAS  PubMed  Google Scholar 

  • Denman-Johnson K, Forge A (1999) Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse. J Neurocytol 28:821–835

    Article  CAS  PubMed  Google Scholar 

  • Desai A, Jha O, Iyer V et al (2009) Reversible hypogonadism in Bardet-Biedl syndrome. Fertil Steril 92:391.e13–15

    Article  Google Scholar 

  • Falcón-Urrutia P, Carrasco CM, Lois P et al (2015) Shh signaling through the primary cilium modulates rat oligodendrocyte differentiation. PLoS One 10:e0133567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feess-Higgins A, Larroche J-C (1987) Le développement du cerveau foetal humain: atlas anatomique = Development of the human foetal brain : an anatomical atlas. Paris; Masson, Inserm

    Google Scholar 

  • Feutz AC, Pham-Dinh D, Allinquant B et al (2001) An immortalized jimpy oligodendrocyte cell line: defects in cell cycle and cAMP pathway. Glia 34:241–252

    Article  CAS  PubMed  Google Scholar 

  • Forsythe E, Beales PL (2013) Bardet-Biedl syndrome. Eur J Hum Genet EJHG 21:8–13

    Article  CAS  PubMed  Google Scholar 

  • Fu M-M, McAlear TS, Nguyen H et al (2019) The Golgi outpost protein TPPP nucleates microtubules and is critical for myelination. Cell 179:132-146.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodyear RJ, Marcotti W, Kros CJ, Richardson GP (2005) Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 485:75–85

    Article  PubMed  Google Scholar 

  • Green JS, Parfrey PS, Harnett JD et al (1989) The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med 321:1002–1009

    Article  CAS  PubMed  Google Scholar 

  • Haq N, Schmidt-Hieber C, Sialana FJ et al (2019) Loss of Bardet-Biedl syndrome proteins causes synaptic aberrations in principal neurons. PLoS Biol 17:e3000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu Y, Garrison JE, Seo S, Sheffield VC (2020) The absence of BBSome function decreases synaptogenesis and causes ectopic synapse formation in the retina. Sci Rep 10:8321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannaccone A, Mykytyn K, Persico AM et al (2005) Clinical evidence of decreased olfaction in Bardet-Biedl syndrome caused by a deletion in the BBS4 gene. Am J Med Genet A 132A:343–346

    Article  PubMed  Google Scholar 

  • Jossin Y (2020) Reelin Functions. Mechanisms of Action and Signaling Pathways During Brain Development and Maturation, Biomolecules, p 10

    Google Scholar 

  • Kasahara K, Miyoshi K, Murakami S et al (2014) Visualization of astrocytic primary cilia in the mouse brain by immunofluorescent analysis using the cilia marker Arl13b. Acta Med Okayama 68:317–322

    PubMed  Google Scholar 

  • Keppler-Noreuil KM, Blumhorst C, Sapp JC et al (2011) Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS). BMC Med Genet 12:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JC, Badano JL, Sibold S et al (2004) The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat Genet 36:462–470

    Article  CAS  PubMed  Google Scholar 

  • Klein D, Ammann F (1969) The syndrome of Laurence-Moon-Bardet-Biedl and allied diseases in Switzerland. Clinical, genetic and epidemiological studies. J Neurol Sci 9:479–513

    Article  CAS  PubMed  Google Scholar 

  • Kulaga HM, Leitch CC, Eichers ER et al (2004) Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet 36:994–998

    Article  CAS  PubMed  Google Scholar 

  • Lavigne-Rebillard M, Dechesne C, Pujol R et al (1985) Development of the internal ear during the 1st trimester of pregnancy. Differentiation of the sensory cells and formation of the 1st synapses. Ann Oto-Laryngol Chir Cervico Faciale Bull Soc Oto-Laryngol Hopitaux Paris 102:493–498

    CAS  Google Scholar 

  • Leroith D, Farkash Y, Bar-Ziev J, Spitz IM (1980) Hypothalamic-pituitary function in the Bardet-Biedl syndrome. Isr J Med Sci 16:514–518

    CAS  PubMed  Google Scholar 

  • Louvi A, Grove EA (2011) Cilia in the CNS: the quiet organelle claims center stage. Neuron 69:1046–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallon BS, Shick HE, Kidd GJ, Macklin WB (2002) Proteolipid promoter activity distinguishes two populations of NG2-positive cells throughout neonatal cortical development. J Neurosci Off J Soc Neurosci 22:876–885

    Article  CAS  Google Scholar 

  • Marszalek JR, Goldstein LS (2000) Understanding the functions of kinesin-II. Biochim Biophys Acta 1496:142–150

    Article  CAS  PubMed  Google Scholar 

  • May-Simera HL, Ross A, Rix S et al (2009) Patterns of expression of Bardet-Biedl syndrome proteins in the mammalian cochlea suggest noncentrosomal functions. J Comp Neurol 514:174–188

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian G, Nakhjavani MK, Farrahi A (1979) The Laurence-Moon-Bardet-Biedl syndrome: unresponsiveness to the action of testosterone, a possible mechanism. Fertil Steril 31:417–422

    Article  CAS  PubMed  Google Scholar 

  • Mykytyn K, Sheffield VC (2004) Establishing a connection between cilia and Bardet-Biedl syndrome. Trends Mol Med 10:106–109

    Article  CAS  PubMed  Google Scholar 

  • Nachury MV, Loktev AV, Zhang Q et al (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Nawaz S, Sánchez P, Schmitt S et al (2015) Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 34:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novas R, Cardenas-Rodriguez M, Irigoín F, Badano JL (2015) Bardet-Biedl syndrome: is it only cilia dysfunction? FEBS Lett 589:3479–3491

    Article  CAS  PubMed  Google Scholar 

  • O’Meara RW, Ryan SD, Colognato H, Kothary R (2011) Derivation of enriched oligodendrocyte cultures and oligodendrocyte/neuron myelinating co-cultures from post-natal murine tissues. J Vis Exp JoVE

  • O’Rahilly R (1975) The prenatal development of the human eye. Exp Eye Res 21:93–112

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1999) Minireview: summary of the initial development of the human nervous system. Teratology 60:39–41

    Article  PubMed  Google Scholar 

  • Reinfrank RF, Nichols FL (1964) Hypogonadotropphic hypogonadism in the Laurence-Moon syndrome. J Clin Endocrinol Metab 24:48–53

    Article  CAS  PubMed  Google Scholar 

  • Ross AJ, May-Simera H, Eichers ER et al (2005) Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat Genet 37:1135–1140

    Article  CAS  PubMed  Google Scholar 

  • Roth AA (1947) Familial eunuchoidism; the Laurence-Moon-Biedl syndrome. J Urol 57:427–445

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Baye LM, Schulz NP et al (2010) BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci U S A 107:1488–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Garrison JE, Wang K, Sheffield VC (2019) Absence of BBSome function leads to astrocyte reactivity in the brain. Mol Brain 12:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Sipos É, Komoly S, Ács P (2018) Quantitative comparison of primary cilia marker expression and length in the mouse brain. J Mol Neurosci MN 64:397–409

    Article  CAS  PubMed  Google Scholar 

  • Sobkowicz HM, Slapnick SM, August BK (1995) The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol 24:633–653

    Article  CAS  PubMed  Google Scholar 

  • Swiderski RE, Agassandian K, Ross JL et al (2012) Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. Fluids Barriers CNS 9:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomason EJ, Escalante M, Osterhout DJ, Fuss B (2020) The oligodendrocyte growth cone and its actin cytoskeleton: a fundamental element for progenitor cell migration and CNS myelination. Glia 68:1329–1346

    Article  PubMed  Google Scholar 

  • Tilney LG, Cotanche DA, Tilney MS (1992) Actin filaments, stereocilia and hair cells of the bird cochlea. VI. How the number and arrangement of stereocilia are determined. Dev Camb Engl 116:213–226

    CAS  Google Scholar 

  • Toledo SP, Medeiros-Neto GA, Knobel M, Mattar E (1977) Evaluation of the hypothalamic-pituitary-gonadal function in the Bardet-Biedl syndrome. Metabolism 26:1277–1291

    Article  CAS  PubMed  Google Scholar 

  • Uytingco CR, Green WW, Martens JR (2019) Olfactory loss and dysfunction in ciliopathies: molecular mechanisms and potential therapies. Curr Med Chem 26:3103–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheatley DN (2005) Landmarks in the first hundred years of primary (9+0) cilium research. Cell Biol Int 29:333–339

    Article  CAS  PubMed  Google Scholar 

  • Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73–81

    Article  CAS  PubMed  Google Scholar 

  • Wolff-Quenot M-J (1997) Atlas d’embryologie clinique: anatomie sectionnelle et imagerie de l’embryon et du foetus. DeBoeck université, Paris

    Google Scholar 

  • Zine A, Romand R (1996) Development of the auditory receptors of the rat: a SEM study. Brain Res 721:49–58

    Article  CAS  PubMed  Google Scholar 

  • Zuchero JB, Fu M-M, Sloan SA et al (2015) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34:152–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Giada Delfino received a grant from the French government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bénardais.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bénardais, K., Delfino, G., Samama, B. et al. BBS4 protein has basal body/ciliary localization in sensory organs but extra-ciliary localization in oligodendrocytes during human development. Cell Tissue Res 385, 37–48 (2021). https://doi.org/10.1007/s00441-021-03440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03440-9

Keywords

Navigation