Skip to main content
Log in

Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.)

Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Internat 11:36–42

    Google Scholar 

  • Alami-Durante H (1990) Growth of organs and tissues in carp (Cyprinus carpio L.) larvae. Growth Dev Aging 54:109–116

    CAS  PubMed  Google Scholar 

  • Alami-Durante H, Fauconneau B, Rouel M, Escaffre AM, Bergot P (1997) Growth and multiplication of white skeletal muscle fibres in carp larvae in relation to somatic growth rate. J Fish Biol 50:1285–1302

    Article  Google Scholar 

  • Alami-Durante H, Bergot P, Rouel M, Goldspink G (2000) Effects of environmental temperature on the development of the myotomal white muscle in larval carp (Cyprinus carpio L.). J Exp Biol 203:3675–3688

    CAS  PubMed  Google Scholar 

  • Alami-Durante E, Rouel M, Kentouri M (2006) New insights into temperature-induced white muscle growth plasticity during Dicentrarchus labrax early life: a developmental and allometric study. Mar Biol 149:1551–1565

    Article  Google Scholar 

  • Alami-Durante H, Olive N, Rouel M (2007) Early thermal history significantly affects the seasonal hyperplastic process occurring in the myotomal white muscle of Dicentrarchus labrax juveniles. Cell Tissue Res 327:553–570

    Article  PubMed  Google Scholar 

  • Alami-Durante H, Médale F, Cluzeaud M, Kaushik SJ (2010a) Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture 303:50–58

    Article  CAS  Google Scholar 

  • Alami-Durante H, Wrutniak-Cabello C, Kaushik SJ, Médale F (2010b) Skeletal muscle cellularity and expression of myogenic regulatory factors and myosin heavy chains in rainbow trout (Oncorhynchus mykiss): effects of changes in dietary plant protein sources and amino acid profiles. Comp Biochem Physiol 156A:561–568

    Article  CAS  Google Scholar 

  • Alami-Durante H, Cluzeaud M, Bazin D, Mazurais D, Zambonino-Infante JL (2011) Dietary cholecalciferol regulates the recruitment and growth of skeletal muscle fibers and the expressions of myogenic regulatory factors and the myosin heavy chain in European sea bass larvae. J Nutr 141:2146–2151

    Article  CAS  PubMed  Google Scholar 

  • Alami-Durante H, Cluzeaud M, Duval C, Maunas P, Girod-David V, Medale F (2014) Early decrease in dietary protein/energy ratio by fat addition and ontogenetic changes in rainbow trout muscle growth mechanisms: short- and long-term effects. Br J Nutr 112:674–-687, doi:10.1017/S0007114514001391

    Article  CAS  PubMed  Google Scholar 

  • Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, Patel K (2004) Follistatin complexes myostatin and antagonises myostatin-mediated inhibition of myogenesis. Dev Biol 270:19–30

    Article  CAS  PubMed  Google Scholar 

  • Artaza JN, Bhasin S, Mallidis C, Taylor W, Ma K, Gonzalez-Cadavid N (2002) Endogenous expression and localization of myostatin and its relation to myosin heavy chain distribution in C2C12 skeletal muscle cells. J Cell Physiol 190:170–179

    Article  CAS  PubMed  Google Scholar 

  • Betancor MB, Izquierdo M, Terova G, Preziosa E, Saleh R, Montero D, Hernández-Cruz CM, Caballero MJ (2013) Physiological pathways involved in nutritional muscle dystrophy and healing in European sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol 164A:399–409

    Article  Google Scholar 

  • Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19:553–569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bone Q (1978) Locomotor muscle. In: Hoar WS, Randall DJ (eds) Fish physiology, Academic Press, New York, pp 361-424

    Google Scholar 

  • Bower NI, Li X, Taylor R, Johnston IA (2008) Switching to fast growth: the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon. J Exp Biol 211:3859–3870

    Article  CAS  PubMed  Google Scholar 

  • Bower NI, Taylor RG, Johnston IA (2009) Phasing of muscle gene expression with fasting-induced recovery growth in Atlantic salmon. Front Zool 6:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Brooks S, Johnston IA (1993) Influence of development and rearing temperature on the distribution, ultrastructure and myosin sub-unit composition of myotomal muscle-fibre types in the plaice Pleuronectes platessa. Mar Biol 117:501–513

    Google Scholar 

  • Calvo J, Johnston IA (1992) Influence of rearing temperature on the distribution of muscle-fiber types in the turbot Scophthalmus maximus at metamorphosis. J Exp Mar Biol Ecol 161:45–55

    Article  Google Scholar 

  • Campinho MA, Silva N, Nowell MA, Llewellyn L, Sweeney GE, Power DM (2007) Troponin T isoform expression is modulated during Atlantic halibut metamorphosis. BMC Dev Biol 7:71

    Article  PubMed Central  PubMed  Google Scholar 

  • Campos C, Valente LM, Borges P, Bizuayehu T, Fernandes JM (2010) Dietary lipid levels have a remarkable impact on the expression of growth-related genes in Senegalese sole (Solea senegalensis Kaup). J Exp Biol 213:200–209

    Article  CAS  PubMed  Google Scholar 

  • Campos C, Valente LMP, Conceição L, Engrola S, Sousa V, Rocha E, Fernandes JMO (2013) Incubation temperature induces changes in muscle cellularity and gene expression in Senegalese sole (Solea senegalensis). Gene 516:209–217

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Kumar RM, Penn BH, Berkes CA, Kooperberg C, Boyer LA, Young RA, Tapscott SJ (2006) Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J 25:502–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capilla E, Teles-García A, Acerete L, Navarro I, Gutiérrez J (2011) Insulin and IGF-I effects on the proliferation of an osteoblast primary culture from sea bream (Sparus aurata). Gen Comp Endocrinol 172:107–114

    Article  CAS  PubMed  Google Scholar 

  • Darias MJ, Zambonino-Infante JL, Hugot K, Cahu CL, Mazurais D (2008) Gene expression patterns during the larval development of European sea bass (Dicentrarchus labrax) by microarray analysis. Mar Biotechnol 10:416–428

    Article  CAS  PubMed  Google Scholar 

  • de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454

    Article  PubMed  Google Scholar 

  • Dedieu S, Mazères G, Cottin P, Brustis JJ (2002) Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int J Dev Biol 46:235–241

    CAS  PubMed  Google Scholar 

  • Fauconneau B, Andre S, Chmaitilly J, Le Bail PY, Krieg F, Kaushik SJ (1997) Control of skeletal muscle fibres and adipose cells size in the flesh of rainbow trout. J Fish Biol 50:296–314

    Article  Google Scholar 

  • Fernández I, Darias M, Andree KB, Mazurais D, Zambonino-Infante JL, Gisbert E (2011) Coordinated gene expression during gilthead sea bream skeletogenesis and its disruption by nutritional hypervitaminosis A. BMC Dev Biol 11:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferri P, Barbieri E, Burattini S, Guescini M, D’Emilio A, Biagiotti L, Del Grande P, De Luca A, Stocchi V, Falcieri E (2009) Expression and sub-localization of myogenic regulatory factors during the differentiation of skeletal muscle C2C12 myoblasts. J Cell Biochem 108:1302–1317

    Article  CAS  PubMed  Google Scholar 

  • Funkenstein B, Skopal T, Rapoport B, Rebhan Y, Du SJ, Radaelli D (2007) Characterization and functional analysis of the 5’ flanking region of myosin light chain-2 gene expressed in white muscle of gilthead sea bream (Sparus aurata). Comp Biochem Physiol 2D:187–199

    CAS  Google Scholar 

  • Funkenstein B, Rebhan Y, Skopal T (2009) Molecular cloning and characterization of follistatin in the gilthead sea bream, Sparus aurata. Mol Biol Rep 36:501–511

    Article  CAS  PubMed  Google Scholar 

  • Galloway TF, Kjorsvik E, Kryvi H (1999a) Muscle growth and development in Atlantic cod larvae (Gadus morhua L.), related to different somatic growth rates. J Exp Biol 202:2111–2120

    CAS  PubMed  Google Scholar 

  • Galloway TF, Kjorsvik E, Kryvi H (1999b) Muscle growth in yolk-sac larvae of the Atlantic halibut as influenced by temperature in the egg and yolk-sac stage. J Fish Biol 55:26–43

    Article  Google Scholar 

  • Gauthier GF, Lowey S, Benfield PA, Hobbs AW (1982) Distribution and properties of myosin isozymes in developing avian and mammalian skeletal muscle fibres. J Cell Biol 92:472–484

    Article  Google Scholar 

  • Georgiou S, Makridis P, Dimopoulos D, Power DM, Mamuris Z, Moutou KA (2014) Myosin light chain 2 isoforms in gilthead sea bream (Sparus aurata L.): molecular growth markers at early stages. Aquaculture 432:434–442

    Article  CAS  Google Scholar 

  • Gerlach GF, Turay L, Malik KT, Lida J, Scutt A, Goldspink G (1990) Mechanisms of temperature acclimation in the carp: a molecular biological approach. Am J Physiol 259:R237–R244

    CAS  PubMed  Google Scholar 

  • Gibson S, Johnston IA (1995) Temperature and development in larvae of the turbot Scophthalmus maximus. Mar Biol 124:17–25

    Article  Google Scholar 

  • Hevroy EM, Jordal AEO, Hordvik I, Espe M, Hemre GI, Olsvik PA (2006) Myosin heavy chain mRNA expression correlates higher with muscle protein accretion than growth in Atlantic salmon, Salmo salar. Aquaculture 252:453–461

    Article  CAS  Google Scholar 

  • Hirayama Y, Kobiyama A, Ochiai Y, Watabe S (1998) Two types of mRNA encoding regulatory light chain in carp fast skeletal muscle differ in their 3’ non-coding regions and expression patterns following temperature acclimation. J Exp Biol 201:2815–2820

    CAS  Google Scholar 

  • Ishibashi J, Perry RL, Asakura A, Rudnicki MA (2005) MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J Cell Biol 171:471–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston IA (1999) Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177:99–115

    Article  Google Scholar 

  • Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209:2249–2264

    Article  CAS  PubMed  Google Scholar 

  • Johnston IA, Vieira VLA, Abercrombie M (1995) Temperature and myogenesis in embryos of the Atlantic herring Clupea harengus. J Exp Biol 198:1389–1403

    PubMed  Google Scholar 

  • Johnston IA, Mclay HA, Abercromby M, Robins D (2000) Early thermal experience has different effects on growth and muscle fiber recruitment in spring- and autumn-running Atlantic salmon populations. J Exp Biol 203:2553–2564

    CAS  PubMed  Google Scholar 

  • Johnston IA, Manthri S, Alderson R, Campbell P, Mitchell D, Whyte D, Dingwall A, Nickell D, Selkirk C, Robertson B (2002) Effects of dietary protein level on muscle cellularity and flesh quality in Atlantic salmon with particular reference to gaping. Aquaculture 210:259–283

    Article  CAS  Google Scholar 

  • Johnston IA, Abercromby M, Vieira VL, Sigursteindóttir RJ, Kristjánsson BK, Sibthorpe D, Skúlason S (2004) Rapid evolution of muscle fiber number in post-glacial populations of Arctic charr Salvelinus alpinus. J Exp Biol 207:4343–4360

    Article  PubMed  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomès D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471

    Article  CAS  PubMed  Google Scholar 

  • Kiessling A, Storebakken T, Asgard T, Kiessling KH (1991) Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykis) in relation to ration and age. I. Growth dynamics. Aquaculture 93:335–356

    Article  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98:9306–9311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maccatrozzo L, Bargelloni L, Radaelli G, Mascarello F, Patarnello T (2001a) Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar Biotechnol 3:224–230

    Article  CAS  PubMed  Google Scholar 

  • Maccatrozzo L, Bargelloni L, Cardazzo B, Rizzo G, Patarnello T (2001b) A novel second myostatin gene is present in teleost fish. FEBS Lett 509:36–40

    Article  CAS  PubMed  Google Scholar 

  • Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A (1995) Multiple defects and perinatal death in mice deficient in follistatin. Nature 374:360–363

    Article  CAS  PubMed  Google Scholar 

  • Medeiros EF, Phelps MP, Fuentes FD, Bradley TM (2009) Overexpression of follistatin in trout stimulates increased muscling. Am J Physiol 297:R235–R242

    Article  CAS  Google Scholar 

  • Mingarro M, Vega-Rubín de Celis S, Astola A, Pendón C, Valdivia MM, Pérez-Sánchez J (2002) Endocrine mediators of seasonal growth in gilthead sea bream (Sparus aurata): the growth hormone and somatolactin paradigm. Gen Comp Endocrinol 128:102–111

    Article  CAS  PubMed  Google Scholar 

  • Montserrat N, Sánchez-Gurmaches J, García de la Serrana D, Navarro MI, Gutiérrez J (2007) IGF-I binding and receptor signal transduction in primary cell culture of muscle cells of gilthead sea bream: changes throughout in vitro development. Cell Tissue Res 330:503–513

    Article  CAS  PubMed  Google Scholar 

  • Montserrat N, Capilla E, Navarro I, Gutiérrez J (2012) Metabolic effects of insulin and IGFs on gilthead sea bream (Sparus aurata) muscle cells. Front Endocrinol 3:55

    Article  Google Scholar 

  • Moutou KA, Canario AV, Mamuris Z, Power DM (2001) Molecular cloning and sequence of Sparus aurata skeletal myosin light chains expressed in white muscle: developmental expression and thyroid regulation. J Exp Biol 204:3009–3018

    CAS  PubMed  Google Scholar 

  • Moutou KA, Silva N, Mamuris Z, Power DM (2005) Expression of myosin light chains 1 and 2 in the developing fast muscle of gilthead sea bream (Sparus aurata). Arch Tierz Dumm 48 (Special Issue):75

    Google Scholar 

  • Moutou KA, Godina M, Georgiou S, Gutiérrez J, Mamuris Z (2009) Myosin light chain 2 in gilthead sea bream (Sparus aurata): a molecular marker of muscle development and growth. In: Sorgeloos P, Olsen Y, Tandler A (eds) Book of Abstracts, 5th Fish and Shellfish Larviculture Symposium 7-10 September 2009. Laboratory of Aquaculture & Artemia Reference Center, Ghent, pp 151–152

    Google Scholar 

  • Nadjar-Boger E, Funkenstein B (2011) Myostatin-2 gene structure and polymorphism of the promoter and first intron in the marine fish Sparus aurata: evidence for DNA duplications and/or translocations. BMC Genet 12:22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ostbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen O (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268:5249–5257

    Article  CAS  PubMed  Google Scholar 

  • Overturf K, Hardy RW (2001) Myosin expression levels in trout muscle: a new method for monitoring specific growth rates for rainbow trout Oncorhynchus mykiss (Walbaum) on varied planes of nutrition. Aquac Res 32:315–322

    Article  CAS  Google Scholar 

  • Patruno M, Radaelli G, Mascarello F, Candia Carnevali MD (1998) Muscle growth in response to changing demands of functions in the teleost Sparus aurata (L.) during development from hatching to juvenile. Anat Embryol 198:487–504

    Article  CAS  PubMed  Google Scholar 

  • Patruno M, Maccatrozzo L, Funkenstein B, Radaelli G (2006) Cloning and expression of insulin-like growth factor I and II in the shi drum (Umbrina cirrosa). Comp Biochem Physiol 144B:137–151

    Article  CAS  Google Scholar 

  • Patruno M, Sivieri S, Poltronieri C, Sacchetto R, Maccatrozzo L, Martinello T, Funkenstein B, Radaelli G (2008) Real-time polymerase chain reaction, in situ hybridization and immunohistochemical localization of insulin-like growth factor-I and myostatin during development of Dicentrarchus labrax (Pisces: Osteichthyes). Cell Tissue Res 331:643–658

    Article  CAS  PubMed  Google Scholar 

  • Patterson SE, Mook LB, Devoto SH (2008) Growth in the larval zebrafish pectoral fin and trunk musculature. Dev Dyn 237:307–315

    Article  PubMed  Google Scholar 

  • Perrot V, Moiseeva EB, Gozes Y, Chan SJ, Ingleton P, Funkenstein B (1999) Ontogeny of the insulin-like growth factor system (IGF-I, IGF-II, and IGF-1R) in gilthead seabream (Sparus aurata): expression and cellular localization. Gen Comp Endocrinol 116:445–460

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pitkänen TI, Xie SQ, Krasnov A, Mason PS, Mölsä H, Stickland NC (2001) Changes in tissue cellularity are associated with growth enhancement in genetically modified Arctic charr (Salvelinus alpinus L.) carrying recombinant growth hormone gene. Mar Biotechnol 3:188–197

    Article  PubMed  Google Scholar 

  • Ramírez-Zarzosa G, Gil F, Latorre R, Ortega A, García-Alcaráz A, Abellán E, Vázquez JM, López-Albors O, Arencibia A, Moreno F (1995) The larval development of lateral musculature in gilthead sea bream Sparus aurata and sea bass Dicentrarchus labrax. Cell Tissue Res 280:217–224

    Article  Google Scholar 

  • Rebhan Y, Funkenstein B (2008) Inhibition of fish myostatin activity by recombinant fish follistatin and myostatin prodomain: potential implications for enhancing muscle growth in farmed fish. Aquaculture 284:231–238

    Article  CAS  Google Scholar 

  • Rius-Francino M, Acerete L, Jiménez-Amilburu V, Capilla E, Navarro I, Gutiérrez J (2011) Differential effects on proliferation of GH and IGFs in sea bream (Sparus aurata) cultured myocytes. Gen Comp Endocrinol 172:44–49

    Article  CAS  PubMed  Google Scholar 

  • Rowlerson A, Veggetti A (2001) Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In: Johnston IA (ed) Muscle devevelopment and growth. Academic Press, San Diego, pp 103–140

    Chapter  Google Scholar 

  • Rowlerson A, Mascarello F, Radaelli G, Veggetti A (1995) Differentiation and growth of muscle in the fish Sparus aurata (L). II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult. J Muscle Res Cell Motil 16:223–236

    Article  CAS  PubMed  Google Scholar 

  • Salze G, Alami-Durante H, Barbut S, Marcone M, Bureau DP (2014) Nutrient deposition partitioning and priorities between body compartments in two size classes of rainbow trout in response to feed restriction. Br J Nutr 111:1361–1372

    Article  CAS  PubMed  Google Scholar 

  • Sánchez A, Robbins J (1994) Unprocessed myogenin transcripts accumulate during mouse embryogenesis. J Biol Chem 269:1587–1590

    PubMed  Google Scholar 

  • Sánchez-Ramos I, Cross I, MácHa J, Mártinez-Rodríguez G, Krylov V, Rebordinos L (2012) Assessment of tools for marker-assisted selection in a marine commercial species: significant association between MSTN-1 gene polymorphism and growth traits. ScientificWorldJournal 2012:369802

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarropoulou E, Power DMP, Mamuris Z, Moutou KA (2006) The two isoforms of myosin light chain 2 in gilthead sea bream (Sparus aurata); alternative polyadenylation site selection and tissue expression. Arch Tierz Dumm 49 (Special Issue):92–96

    Google Scholar 

  • Seiliez I, Sabin N, Gabillard JC (2012) Myostatin inhibits proliferation but not differentiation of trout myoblasts. Mol Cell Endocrinol 351:220–226

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Valente LM, Galante MH, Andrade CA, Monteiro RA, Rocha E (2009) Dietary protein content influences both growth and size distribution of anterior and posterior muscle fibres in juveniles of Pagellus bogaraveo (Brunnich). J Muscle Res Cell Motil 30:29–39

    Article  CAS  PubMed  Google Scholar 

  • Stoiber W, Sanger AM (1996) An electron microscopic investigation into the possible source of new muscle fibres in teleost fish. Anat Embryol 194:569–579

    Article  CAS  PubMed  Google Scholar 

  • Tiago DM, Laizé V, Cancela ML (2008) Alternatively spliced transcripts of Sparus aurata insulin-like growth factor 1 are differentially expressed in adult tissues and during early development. Gen Comp Endocrinol 157:107–115

    Article  CAS  PubMed  Google Scholar 

  • Valente LMP, Rocha E, Gomes EFS, Silva MW, Oliveira MH, Monteiro RAF, Fauconneau B (1999) Growth dynamics of white and red muscle fibres in fast- and slow-growing strains of rainbow trout. J Fish Biol 55:675–691

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034

    Article  PubMed Central  PubMed  Google Scholar 

  • Veggetti A, Mascarello F, Scapolo P, Rowlerson A (1990) Hyperplastic and hypertrophic growth of lateral muscle in Dicentrarchus labrax (L.). Anat Embryol 182:1–10

    Article  CAS  PubMed  Google Scholar 

  • Veggetti A, Rowlerson A, Radaelli G, Arrighi S, Domeneghini C (1999) Post-hatching development of the gut and lateral muscle in the sole. J Fish Biol 55:44–65

    Article  CAS  Google Scholar 

  • Weatherley AH, Gill HS, Rogers SC (1979) Growth dynamics of muscle fibres, dry weight, and condition in relation to somatic growth rate in yearling rainbow trout (Salmo gairdneri). Can J Zool 57:2385–2392

    Article  Google Scholar 

  • Weatherley AH, Gill HS, Lobo AF (1988) Recruitment and maximal diameter of axial muscle fibres in teleosts and their relationship to somatic growth and ultimate size. J Fish Biol 33:851–859

    Article  Google Scholar 

  • Whalen RG, Sell SM, Butler-Browne GS, Schwartz K, Bouveret P, Pinset-Härström I (1981) Three myosin heavy chain isozymes appear sequentially in rat muscle development. Nature 292:805–809

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall, New Jersey

    Google Scholar 

  • Zhang W, Behringer RR, Olson EN (1995) Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev 9:1388–1399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank M. Cluzeaud and D. Bazin for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina A. Moutou.

Additional information

This research was co-financed by Greek National Funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II, Investing in Knowledge Society through the European Social Fund and COST Action FA0801 “LarvaNet”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiou, S., Alami-Durante, H., Power, D.M. et al. Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.). Cell Tissue Res 363, 541–554 (2016). https://doi.org/10.1007/s00441-015-2254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2254-0

Keywords

Navigation