Skip to main content

Advertisement

Log in

Control of neural stem cell self-renewal and differentiation in Drosophila

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The neural stem cells of Drosophila, called neuroblasts, have the ability to self-renew and at the same time produce many different types of neurons and glial cells. In the central brain and ventral ganglia, neuroblasts are specified and delaminate from the neuroectoderm during embryonic development under the control of proneural and neurogenic genes. In contrast, in the optic lobes, neuroepithelial cells are transformed into neuroblasts postembryonically by a spatial wave of proneural gene expression. Central brain and ventral nerve cord neuroblasts manifest a short embryonic proliferation period followed by a stage of quiescence and then undergo a prolonged postembryonic proliferation period during which most of the differentiated neurons of the adult CNS are generated. While most neuroblasts belong to a type I class that produces neuronal lineages through non-self-renewing ganglion mother cells, a small subset of type II neuroblasts generates exceptionally large neuronal lineages through self-renewing intermediate progenitor cells that have a transit amplifying function. All neuroblasts in the CNS generate their neural progeny through an asymmetric cell division mode in which the interplay of apical complex and basal complex molecules in the mitotically active progenitor results in the segregation of cell fate determinants into the smaller more differentiated daughter cell. Defects in this molecular control of asymmetric cell division in neuroblasts can result in brain tumor formation. Proliferating neuroblast lineages in the developing CNS utilize transcription factor cascades as a generic mechanism for temporal patterning and birth order-dependent determination of differential neural cell fate. This contributes to the generation of a remarkable diversity of cell types in the developing CNS from a surprisingly small set of neural stem cell-like precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aPKC:

Atypical protein kinase C

CNS:

Central nerve system

Gαi:

G protein α i subunit 65A

INP:

Intermediate neural progenitor

Mud:

Mushroom body defect

Par3:

Partitioning defect 3

Par6:

Partitioning defect 6

Pins:

Partner of Inscuteable

Pon:

Partner of Numb

References

  • Almeida MS, Bray SJ (2005) Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech Dev 122:1282–1293

    CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Simpson P (1991) Choosing a cell fate: a view from the Notch locus. Trends Genetics 7:403–408

    CAS  Google Scholar 

  • Atwood SX, Prehoda KE (2009) aPKC Phosphorylates Miranda to polarize fate determinants during neuroblast asymmetric cell division. Curr Biol 19:723–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baumgardt M, Karlsson D, Terriente J, Diaz-Benjumea FJ, Thor S (2009) Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139:969–982

    CAS  PubMed  Google Scholar 

  • Bayraktar OA, Boone JQ, Drummond ML, Doe CQ (2010) Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Dev 5:26

    PubMed Central  PubMed  Google Scholar 

  • Bayraktar OA, Doe CQ (2013) Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498:449–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaucher M, Goodliffe J, Hersperger E, Trunova S, Frydman H, Shearn A (2007) Drosophila brain tumor metastases express both neuronal and glial cell type markers. Dev Biol 301:287–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bello B, Holbro N, Reichert H (2007) Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila. Development 134:1091–1099

    CAS  PubMed  Google Scholar 

  • Bello B, Reichert H, Hirth F (2006) The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of Drosophila. Development 133:2639–2648

    CAS  PubMed  Google Scholar 

  • Bello BC, Hirth F, Gould AP (2003) A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37:209–219

    CAS  PubMed  Google Scholar 

  • Bello BC, Izergina N, Caussinus E, Reichert H (2008) Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5

    PubMed Central  PubMed  Google Scholar 

  • Benito-Sipos J, Estacio-Gomez A, Moris-Sanz M, Baumgardt M, Thor S, Diaz-Benjumea FJ (2010) A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS. Development 137:3327–3336

    CAS  PubMed  Google Scholar 

  • Benito-Sipos J, Ulvklo C, Gabilondo H, Baumgardt M, Angel A, Torroja L, Thor S (2011) Seven up acts as a temporal factor during two different stages of neuroblast 5-6 development. Development 138:5311–5320

    CAS  PubMed  Google Scholar 

  • Berger C, Harzer H, Burkard TR, Steinmann J, van der Horst S, Laurenson AS, Novatchkova M, Reichert H, Knoblich JA (2012) FACS purification and transcriptome analysis of drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep 2:407–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Betschinger J, Mechtler K, Knoblich JA (2003) The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422:326–330

    CAS  PubMed  Google Scholar 

  • Betschinger J, Mechtler K, Knoblich JA (2006) Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124:1241–1253

    CAS  PubMed  Google Scholar 

  • Boone JQ, Doe CQ (2008) Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev Neurol 68:1185–1195

    Google Scholar 

  • Bossing T, Udolph G, Doe CQ, Technau GM (1996) The embryonic central nervous system lineages of Drosophila melanogaster. I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev Biol 179:41–64

    CAS  PubMed  Google Scholar 

  • Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA (2008) The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 14:535–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broadus J, Doe CQ (1995) Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development 121:3989–3996

    CAS  PubMed  Google Scholar 

  • Brody T, Odenwald WF (2000) Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev Biol 226:34–44

    CAS  PubMed  Google Scholar 

  • Buescher M, Hing FS, Chia W (2002) Formation of neuroblasts in the embryonic central nervous system of Drosophila melanogaster is controlled by SoxNeuro. Development 129:4193–4203

    CAS  PubMed  Google Scholar 

  • Campos-Ortega JA (1993) Mechanisms of early neurogenesis in Drosophila melanogaster. J Neurobiol 24:1305–1327

    CAS  PubMed  Google Scholar 

  • Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37:1125–1129

    CAS  PubMed  Google Scholar 

  • Cenci C, Gould AP (2005) Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development 132:3835–3845

    CAS  PubMed  Google Scholar 

  • Chang KC, Wang C, Wang H (2012) Balancing self-renewal and differentiation by asymmetric division: insights from brain tumor suppressors in Drosophila neural stem cells. BioEssays 34:301–310

    PubMed  Google Scholar 

  • Chell JM, Brand AH (2010) Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–1173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choksi SP, Southall TD, Bossing T, Edoff K, de Wit E, Fischer BE, van Steensel B, Micklem G, Brand AH (2006) Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell 11:775–789

    CAS  PubMed  Google Scholar 

  • Colombani J, Andersen DS, Leopold P (2012) Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336:582–585

    CAS  PubMed  Google Scholar 

  • Doe CQ (1992) Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 116:855–863

    CAS  PubMed  Google Scholar 

  • Doe CQ (2008) Neural stem cells: balancing self-renewal with differentiation. Development 135:1575–1587

    CAS  PubMed  Google Scholar 

  • Doe CQ, Technau GM (1993) Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci 16:510–514

    CAS  PubMed  Google Scholar 

  • Egger B, Boone JQ, Stevens NR, Brand AH, Doe CQ (2007) Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev 2:1

    PubMed Central  PubMed  Google Scholar 

  • Egger B, Chell JM, Brand AH (2008) Insights into neural stem cell biology from flies. Philos Trans R Soc Lond B 363:39–56

    CAS  Google Scholar 

  • Egger B, Gold KS, Brand AH (2010) Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137:2981–2987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egger B, Gold KS, Brand AH (2011) Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly 5:237–241

    CAS  PubMed  Google Scholar 

  • Fernandez-Hernandez I, Rhiner C, Moreno E (2013) Adult neurogenesis in Drosophila. Cell Reports 3:1857–1865

    CAS  PubMed  Google Scholar 

  • Grosskortenhaus R, Pearson BJ, Marusich A, Doe CQ (2005) Regulation of temporal identity transitions in Drosophila neuroblasts. Dev Cell 8:193–202

    CAS  PubMed  Google Scholar 

  • Grosskortenhaus R, Robinson KJ, Doe CQ (2006) Pdm and Castor specify late-born motor neuron identity in the NB7-1 lineage. Genes Dev 20:2618–2627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartenstein V, Wodarz A (2013) Initial neurogenesis in Drosophila. Dev Biol 2:701–721

    CAS  Google Scholar 

  • Homem CC, Knoblich JA (2012) Drosophila neuroblasts: a model for stem cell biology. Development 139:4297–4310

    CAS  PubMed  Google Scholar 

  • Ikeshima-Kataoka H, Skeath JB, Nabeshima Y, Doe CQ, Matsuzaki F (1997) Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390:625–629

    CAS  PubMed  Google Scholar 

  • Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521

    CAS  PubMed  Google Scholar 

  • Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 149:134–148

    CAS  PubMed  Google Scholar 

  • Izergina N, Balmer J, Bello B, Reichert H (2009) Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev 4:44

    PubMed Central  PubMed  Google Scholar 

  • Izumi Y, Ohta N, Hisata K, Raabe T, Matsuzaki F (2006) Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat Cell Biol 8:586–593

    CAS  PubMed  Google Scholar 

  • Januschke J, Gonzalez C (2008) Drosophila asymmetric division, polarity and cancer. Oncogene 27:6994–7002

    CAS  PubMed  Google Scholar 

  • Jiang Y, Reichert H (2012) Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain. Neural Dev 7:3

    PubMed Central  PubMed  Google Scholar 

  • Kambadur R, Koizumi K, Stivers C, Nagle J, Poole SJ, Odenwald WF (1998) Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 12:246–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karcavich R, Doe CQ (2005) Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol 481:240–251

    PubMed  Google Scholar 

  • Karcavich RE (2005) Generating neuronal diversity in the Drosophila central nervous system: a view from the ganglion mother cells. Dev Dyn 232:609–616

    CAS  PubMed  Google Scholar 

  • Karlsson D, Baumgardt M, Thor S (2010) Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLoS Biol 8:e1000368

    PubMed Central  PubMed  Google Scholar 

  • Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132:583–597

    CAS  PubMed  Google Scholar 

  • Komori H, Xiao Q, McCartney BM, Lee CY (2014) Brain tumor specifies intermediate progenitor cell identity by attenuating beta-catenin/Armadillo activity. Development 141:51–62

    CAS  PubMed  Google Scholar 

  • Kraut R, Campos-Ortega JA (1996) inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev Biol 174:65–81

    CAS  PubMed  Google Scholar 

  • Kraut R, Chia W, Jan LY, Jan YN, Knoblich JA (1996) Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383:50–55

    CAS  PubMed  Google Scholar 

  • Kumar A, Bello B, Reichert H (2009) Lineage-specific cell death in postembryonic brain development of Drosophila. Development 136:3433–3442

    CAS  PubMed  Google Scholar 

  • Kurusu M, Maruyama Y, Adachi Y, Okabe M, Suzuki E, Furukubo-Tokunaga K (2009) A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain. Dev Biol 326:224–236

    CAS  PubMed  Google Scholar 

  • Larsen C, Shy D, Spindler SR, Fung S, Pereanu W, Younossi-Hartenstein A, Hartenstein V (2009) Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain. Dev Biol 335:289–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CY, Andersen RO, Cabernard C, Manning L, Tran KD, Lanskey MJ, Bashirullah A, Doe CQ (2006a) Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. Genes Dev 20:3464–3474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CY, Wilkinson BD, Siegrist SE, Wharton RP, Doe CQ (2006b) Brat is a Miranda cargo protein that promotes neuronal differentiation and inhibits neuroblast self-renewal. Dev Cell 10:441–449

    CAS  PubMed  Google Scholar 

  • Li L, Vaessin H (2000) Pan-neural Prospero terminates cell proliferation during Drosophila neurogenesis. Genes Dev 14:147–151

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Wang C, Sandanaraj E, Aw SS, Koe CT, Wong JJ, Yu F, Ang BT, Tang C, Wang H (2014) The SCFSlimb E3 ligase complex regulates asymmetric division to inhibit neuroblast overgrowth. EMBO Rep 15:165–174

    CAS  PubMed  Google Scholar 

  • Li X, Erclik T, Bertet C, Chen Z, Voutev R, Venkatesh S, Morante J, Celik A, Desplan C (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498:456–462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin S, Lai SL, Yu HH, Chihara T, Luo L, Lee T (2010) Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain. Development 137:43–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovick JK, Ngo KT, Omoto JJ, Wong DC, Nguyen JD, Hartenstein V (2013) Postembryonic lineages of the Drosophila brain: I. Development of the lineage associated fiber tracts Dev Biol 384:228–257

    CAS  PubMed  Google Scholar 

  • Maurange C, Cheng L, Gould AP (2008) Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133:891–902

    CAS  PubMed  Google Scholar 

  • Nakajima A, Isshiki T, Kaneko K, Ishihara S (2010) Robustness under functional constraint: the genetic network for temporal expression in Drosophila neurogenesis. PLoS Comput Biol 6:e1000760

    PubMed Central  PubMed  Google Scholar 

  • Neumuller RA, Knoblich JA (2009) Wicked views on stem cell news. Nat Cell Biol 11:678–679

    PubMed  Google Scholar 

  • Neumuller RA, Richter C, Fischer A, Novatchkova M, Neumuller KG, Knoblich JA (2011) Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 8:580–593

    PubMed Central  PubMed  Google Scholar 

  • Novotny T, Eiselt R, Urban J (2002) Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development 129:1027–1036

    CAS  PubMed  Google Scholar 

  • Ohshiro T, Yagami T, Zhang C, Matsuzaki F (2000) Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408:593–596

    CAS  PubMed  Google Scholar 

  • Overton PM, Meadows LA, Urban J, Russell S (2002) Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development 129:4219–4228

    CAS  PubMed  Google Scholar 

  • Pearson BJ, Doe CQ (2003) Regulation of neuroblast competence in Drosophila. Nature 425:624–628

    CAS  PubMed  Google Scholar 

  • Peng CY, Manning L, Albertson R, Doe CQ (2000) The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408:596–600

    CAS  PubMed  Google Scholar 

  • Peterson C, Carney GE, Taylor BJ, White K (2002) reaper is required for neuroblast apoptosis during Drosophila development. Development 129:1467–1476

    CAS  PubMed  Google Scholar 

  • Prokop A, Technau GM (1991) The origin of postembryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Development 111:79–88

    CAS  PubMed  Google Scholar 

  • Randhawa R, Cohen P (2005) The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metab 86:84–90

    CAS  PubMed  Google Scholar 

  • Reddy BV, Rauskolb C, Irvine KD (2010) Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137:2397–2408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reichert H (2011) Drosophila neural stem cells: cell cycle control of self-renewal, differentiation, and termination in brain development. Results Probl Cell Differ 53:529–546

    CAS  PubMed  Google Scholar 

  • Rhyu MS, Jan LY, Jan YN (1994) Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76:477–491

    CAS  PubMed  Google Scholar 

  • Schaefer M, Knoblich JA (2001) Protein localization during asymmetric cell division. Exp Cell Res 271:66–74

    CAS  PubMed  Google Scholar 

  • Schmidt H, Rickert C, Bossing T, Vef O, Urban J, Technau GM (1997) The embryonic central nervous system lineages of Drosophila melanogaster. II. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev Biol 189:186–204

    CAS  PubMed  Google Scholar 

  • Shen CP, Jan LY, Jan YN (1997) Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90:449–458

    CAS  PubMed  Google Scholar 

  • Shim J, Gururaja-Rao S, Banerjee U (2013) Nutritional regulation of stem and progenitor cells in Drosophila. Development 140:4647–4656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siegrist SE, Haque NS, Chen CH, Hay BA, Hariharan IK (2010) Inactivation of both Foxo and reaper promotes long-term adult neurogenesis in Drosophila. Curr Biol 20:643–648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siller KH, Cabernard C, Doe CQ (2006) The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8:594–600

    CAS  PubMed  Google Scholar 

  • Skeath JB (1999) At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. BioEssays 21:922–931

    CAS  PubMed  Google Scholar 

  • Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15

    CAS  PubMed  Google Scholar 

  • Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471:508–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spana EP, Doe CQ (1996) Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17:21–26

    CAS  PubMed  Google Scholar 

  • Spana EP, Kopczynski C, Goodman CS, Doe CQ (1995) Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121:3489–3494

    CAS  PubMed  Google Scholar 

  • Speicher S, Fischer A, Knoblich J, Carmena A (2008) The PDZ protein Canoe regulates the asymmetric division of Drosophila neuroblasts and muscle progenitors. Curr Biol 18:831–837

    CAS  PubMed  Google Scholar 

  • Suzuki T, Kaido M, Takayama R, Sato M (2013) A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev Biol 380:12–24

    CAS  PubMed  Google Scholar 

  • Technau GM, Berger C, Urbach R (2006) Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev Dyn 235:861–869

    CAS  PubMed  Google Scholar 

  • Touma JJ, Weckerle FF, Cleary MD (2012) Drosophila Polycomb complexes restrict neuroblast competence to generate motoneurons. Development 139:657–666

    CAS  PubMed  Google Scholar 

  • Tran KD, Doe CQ (2008) Pdm and Castor close successive temporal identity windows in the NB3-1 lineage. Development 135:3491–3499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Truman JW, Bate M (1988) Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 125:145–157

    CAS  PubMed  Google Scholar 

  • Truman JW, Moats W, Altman J, Marin EC, Williams DW (2010) Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster. Development 137:53–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji T, Hasegawa E, Isshiki T (2008) Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development 135:3859–3869

    CAS  PubMed  Google Scholar 

  • Uemura T, Shepherd S, Ackerman L, Jan LY, Jan YN (1989) numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58:349–360

    CAS  PubMed  Google Scholar 

  • Urbach R, Technau GM (2003) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130:3621–3637

    CAS  PubMed  Google Scholar 

  • Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. BioEssays 26:739–751

    CAS  PubMed  Google Scholar 

  • Viktorin G, Riebli N, Popkova A, Giangrande A, Reichert H (2011) Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol 356:553–565

    CAS  PubMed  Google Scholar 

  • Viktorin G, Riebli N, Reichert H (2013) A multipotent transit-amplifying neuroblast lineage in the central brain gives rise to optic lobe glial cells in Drosophila. Dev Biol 379:182–194

    CAS  PubMed  Google Scholar 

  • Wang H, Cai Y, Chia W, Yang X (2006a) Drosophila homologs of mammalian TNF/TNFR-related molecules regulate segregation of Miranda/Prospero in neuroblasts. EMBO J 25:5783–5793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Ouyang Y, Somers WG, Chia W, Lu B (2007) Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 449:96–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Somers GW, Bashirullah A, Heberlein U, Yu F, Chia W (2006b) Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev 20:3453–3463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weng M, Golden KL, Lee CY (2010) dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev Cell 18:126–135

    CAS  PubMed  Google Scholar 

  • Weng M, Lee CY (2011) Keeping neural progenitor cells on a short leash during Drosophila neurogenesis. Curr Opin Neurobiol 21:36–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate Numb localization. Cell 135:161–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu PS, Egger B, Brand AH (2008) Asymmetric stem cell division: lessons from Drosophila. Semin Cell Dev Biol 19:283–293

    CAS  PubMed  Google Scholar 

  • Xiao Q, Komori H, Lee CY (2012) klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development 139:2670–2680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamanaka T, Horikoshi Y, Izumi N, Suzuki A, Mizuno K, Ohno S (2006) Lgl mediates apical domain disassembly by suppressing the PAR-3-aPKC-PAR-6 complex to orient apical membrane polarity. J Cell Sci 119:2107–2118

    CAS  PubMed  Google Scholar 

  • Yasugi S, Mizuno T (2008) Molecular analysis of endoderm regionalization. Dev Growth Differ 50(Suppl 1):S79–96

  • Yasugi T, Umetsu D, Murakami S, Sato M, Tabata T (2008) Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135:1471–1480

    CAS  PubMed  Google Scholar 

  • Younossi-Hartenstein A, Nassif C, Green P, Hartenstein V (1996) Early neurogenesis of the Drosophila brain. J Comp Neurol 370:313–329

    CAS  PubMed  Google Scholar 

  • Zhong W, Chia W (2008) Neurogenesis and asymmetric cell division. Curr Opin Neurobiol 18:4–11

    PubMed  Google Scholar 

  • Zhong W, Feder JN, Jiang MM, Jan LY, Jan YN (1996) Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17:43–53

    CAS  PubMed  Google Scholar 

  • Zhu S, Lin S, Kao CF, Awasaki T, Chiang AS, Lee T (2006) Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127:409–422

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yanrui Jiang for critical reading of the manuscript. This work was supported by grants from the Swiss National Research Program 63 (4063 L 128006) and the Swiss National Science Foundation (31003A 140607) as well as by grants from the Global Research Laboratory Program (NRF-2009-00424), Brain Research Program (NRF-2009-0081465), and Stem Cell Research Program (NRF-2006-2004289) of the Korean Ministry of Science, ICT, and Future Planning (MSIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hwa Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K.H., Reichert, H. Control of neural stem cell self-renewal and differentiation in Drosophila . Cell Tissue Res 359, 33–45 (2015). https://doi.org/10.1007/s00441-014-1914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1914-9

Keywords

Navigation