Skip to main content
Log in

Assessing the potential of colony morphology for dissecting the CFU-F population from human bone marrow stromal cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) provide an ideal cell source for bone tissue engineering strategies. However, bone marrow stromal cell (BMSC) populations that contain MSCs are highly heterogeneous expressing a wide variety of proliferative and differentiation potentials. Current MSC isolation methods employing magnetic-activated and fluorescent-activated cell sorting can be expensive and time consuming and, in the absence of specific MSC markers, fail to generate homogeneous populations. We have investigated the potential of various colony morphology descriptors to provide correlations with cell growth potential. Density-independent colony forming unit-fibroblastic (CFU-F) capacity is a MSC prerequisite and resultant colonies display an array of shapes and sizes that might be representative of cell function. Parent colonies were initially categorised according to their diameter and cell density and grouped before passage for the subsequent assessment of progeny colonies. Whereas significant morphological differences between distinct parent populations indicated a correlation with immunophenotype, enhanced CFU-F capacity was not observed when individual colonies were isolated according to these morphological parameters. Colony circularity, an alternative morphological measure, displayed a strong correlation with subsequent cell growth potential. The current study indicates the potential of morphological descriptors for predicting cell growth rate and suggests new directions for research into dissection of human BMSC CFU-F populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves H, Dechering K, Van Blitterswijk C, De Boer J (2011) High-throughput assay for the identification of compounds regulating osteogenic differentiation of human mesenchymal stromal cells. PLoS One 6:e26678

    Article  PubMed  CAS  Google Scholar 

  • Aslan H, Zilberman Y, Kandel L, Liebergall M, Oskouian RJ, Gazit D, Gazit Z (2006) Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells. Stem Cells 24:1728–1737

    Article  PubMed  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts and assays. Cell Stem Cell 2:313–319

    Article  PubMed  CAS  Google Scholar 

  • Bianco P, Robey PG, Saggio I, Riminucci M (2010) Mesenchymal stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and signficance in incurable skeletal disease. Hum Gene Ther 21:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Buhring HJ, Battula VL, Tremi S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Article  PubMed  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  • Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  PubMed  CAS  Google Scholar 

  • Delorme B, Charbord P (2007) Culture and characterization of human bone marrow mesenchymal stem cells. Methods Mol Med 140:67–81

    Article  PubMed  CAS  Google Scholar 

  • Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    Article  PubMed  CAS  Google Scholar 

  • Docheva D, Padula D, Popov C, Mutschler W, Clausen-Schaumann H, Schieker M (2008) Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. J Cell Mol Med 12:537–552

    Article  PubMed  Google Scholar 

  • Friedenstein AJ (1980) Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Hematol Blood Transfus 25:19–29

    CAS  Google Scholar 

  • Gothard D, Tare RS, Mitchell PD, Dawson JI, Oreffo RO (2011) In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration. Lab Chip 11:1206–1220

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Simmons PJ (1995) The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro. Blood 85:929–940

    PubMed  CAS  Google Scholar 

  • Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84:4164–4173

    PubMed  CAS  Google Scholar 

  • Harichandan A, Buhring HJ (2011) Prospective isolation of human MSC. Best Pract Res Clin Haematol 24:25–36

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann M, Kuska JP, Zscharnack M, Loeffler M, Galle J (2011) Spatial organization of mesenchymal stem cells in vitro—results from a new individual cell-based model with podia. PLoS One 6:e21960

    Article  PubMed  CAS  Google Scholar 

  • Huang CH, Chen MH, Young TH, Jeng JH, Chen YJ (2009) Interactive effects of mechanical stretching and extracelluar matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem 108:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Hudson JE, Mills RJ, Frith JE, Brooke G, Jaramillo-Ferrada P, Wolvetang EJ, Cooper-White JJ (2011) A defined medium and substrate for expansion of human mesenchymal stromal cell progenitors that enriches for osteo- and chondrogenic precursors. Stem Cells Dev 20:77–87

    Article  PubMed  CAS  Google Scholar 

  • Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204–214

    Article  PubMed  Google Scholar 

  • Kwan MD, Slater BJ, Wan DC, Longaker MT (2008) Cell-based therapies for skeletal regenerative medicine. Hum Mol Genet 17:R93–R98

    Article  PubMed  CAS  Google Scholar 

  • Lamprecht MR, Sabatini DM, Carpenter AE (2007) Cell Profiler: free, versatile software for automated biological image analysis. Biotechniques 42:71–75

    Article  PubMed  CAS  Google Scholar 

  • Lecourt S, Marolleau JP, Fromigue O, Vauchez K, Andriamanalijaona R, Ternaux B, Lacassagne MN, Robert I, Boumediene K, Chereau F, Marie P, Larghero J, Fiszman MF, Vilquin JT (2010) Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro. Exp Cell Res 316:2513–2526

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Liu G, Banie L, Wang G, Ning H, Lue TF, Lin CS (2011) Tissue distribution of mesenchymal stem cell marker Stro-1. Stem Cells Dev 20:1747–1752

    Article  PubMed  CAS  Google Scholar 

  • Niehage C, Steenblock C, Pursche T, Bornhauser M, Corbeil D, Hoflack B (2011) The cell surface proteome of human mesenchymal stromal cells. PLoS One 6:e20399

    Article  PubMed  CAS  Google Scholar 

  • Ning H, Lin G, Lue TF, Lin CS (2011) Mesenchymal stem cell marker Stro-1 is a 75kd endothelial antigen. Biochem Biophys Res Commun 413:353–357

    Article  PubMed  CAS  Google Scholar 

  • Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. CIBA Found Symp 136:42–60

    PubMed  CAS  Google Scholar 

  • Panetta NJ, Gupta DM, Quarto N, Longaker MT (2009) Mesenchymal cells for skeletal tissue engineering. Panminerva Med 51:25–41

    PubMed  CAS  Google Scholar 

  • Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  PubMed  CAS  Google Scholar 

  • Pevsner-Fischer M, Levin S, Zipori D (2011) The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev 7:560–568

    Article  PubMed  CAS  Google Scholar 

  • Rastegar F, Shenag D, Huang J, Zhang W, Zhang BQ, He BC, Chen L, Zuo GW, Luo Q, Shi Q, Wagner ER, Huang E, Gao Y, Gao JL, Kim SH, Zhou JZ, Bi Y, Su Y, Zhu G, Luo J, Luo X, Qin J, Reid RR, Luu HH, Haydon RC, Deng ZL, He TC (2010) Mesenchymal stem cells: molecular charactersitics and clinical applications. World J Stem Cell 2:67–80

    Article  Google Scholar 

  • Rhodes NP, Srivastava JK, Smith RF, Longinotto C (2004) Heterogeneity in proliferative potential of ovine mesenchymal stem cells. J Mater Sci Mater Med 15:397–402

    Article  PubMed  CAS  Google Scholar 

  • Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio L, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  PubMed  CAS  Google Scholar 

  • Sengers BG, Dawson JI, Oreffo RO (2010) Characterisation of human bone marrow stromal cell heterogeneity for skeletal regeneration strategies using a two-stage colony assay and computational modelling. Bone 46:496–503

    Article  PubMed  Google Scholar 

  • Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62

    PubMed  CAS  Google Scholar 

  • Sorrentino A, Ferracin M, Castelli G, Biffoni M, Tomaselli G, Baiocchi M, Fatica A, Negrini M, Peschle C, Valtieri M (2008) Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Exp Hematol 36:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Tormin A, Brune JC, Olsson E, Valcich J, Neuman U, Olofsson T, Jacobsen SE, Scheding S (2009) Characterization of bone marrow-derived mesenchymal stromal cells (MSC) based on gene expression profiling of functionally defined MSC subsets. Cytotherapy 11:114–128

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3:e2213

    Article  PubMed  Google Scholar 

  • Xu J, Wang W, Kapila Y, Lotz J, Kapila S (2009) Multiple differentiation capacity of STRO-1+.CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev 18:487–496

    Article  PubMed  CAS  Google Scholar 

  • Zannettino AC, Paton S, Kortesidis A, Khor F, Itescu S, Gronthos S (2007) Human multipotential mesenchymal/stromal stem cells are derived from a discrete subpopulation of STRO-1bright/CD34/CD45-/Glycophorin-A-bone marrow cells. Haematologica 92:1707–1708

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the orthopaedic surgeons at Southampton General Hospital for provision of human bone marrow samples and are grateful to Ms. Esther Ralph for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Gothard or R. O. C. Oreffo.

Additional information

D. Gothard and J. I. Dawson contributed equally to this publication.

This research was funded by the BBSRC (LoLa Grant: BB/G010579/1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gothard, D., Dawson, J.I. & Oreffo, R.O.C. Assessing the potential of colony morphology for dissecting the CFU-F population from human bone marrow stromal cells. Cell Tissue Res 352, 237–247 (2013). https://doi.org/10.1007/s00441-013-1564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1564-3

Keywords

Navigation