Skip to main content

Advertisement

Log in

Characteristics and osteogenic differentiation of stem/progenitor cells in the human dental follicle analyzed by gene expression profiling

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The dental follicle is an ectomesenchymal tissue that surrounds developing tooth germ and that contains osteoblastic-lineage-committed stem/progenitor cells. We examined the osteogenic potential of human dental follicle cells (hDFC) by microarray analysis. We first compared the characteristics of hDFC with those of human bone marrow mesenchymal stem cells (hMSC). Like hMSC, hDFC expressed stem cell markers such as STRO-1 and Notch-1 and differentiated not only into the osteoblastic lineage, but also into the adipogenic lineage. We analyzed the gene expression profiles of hDFC and hMSC that were not differentiated toward the osteogenic lineage. The expression of cell markers and growth factor receptors by hDFC and hMSC was similar, whereas the expression pattern of homeobox genes differed between hDFC and hMSC. Next, we investigated gene expression in hDFC during osteogenic differentiation. Gene expression profiles were analyzed in hDFC cultured in osteogenic induction medium (OIM) or in growth medium (GM) for 3 and 10 days. Many genes whose expression was regulated under these conditions were functionally categorized as “transcription” genes. Osteogenic markers were up-regulated in hDFC during osteogenic differentiation, whereas neurogenic markers were down-regulated. The genes whose expression was regulated in hDFC during osteogenic differentiation were further analyzed by ingenuity pathway analysis and real-time polymerase chain reaction. Bone morphogenetic protein and transforming growth factor-β signaling pathways were activated in hDFC cultured in OIM for 3 days. This study indicates that the dental follicle contains stem cells and/or osteoblastic progenitor cells and is a potential cellular resource for bone regeneration therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad I, Zagouras P, Artavanis-Tsakonas S (1995) Involvement of Notch-1 in mammalian retinal neurogenesis: association of Notch-1 activity with both immature and terminally differentiated cells. Mech Dev 53:73–85

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Bai Y, Matsuzaka K, Hashimoto S, Fukuyama T, Liu X, Wang X, Inoue T (2011) Cementum- and periodontal ligament-like tissue formation by dental follicle cell sheets co-cultured with Hertwig’s epithelial root sheath cells. Bone 48:1417–1426

    Article  PubMed  CAS  Google Scholar 

  • Farhadi J, Jaquiery C, Barbero A, Jakob M, Schaeren S, Pierer G, Heberer M, Martin I (2005) Differentiation-dependent up-regulation of BMP-2, TGF-β1, and VEGF expression by FGF-2 in human bone marrow stromal cells. Plast Reconstr Surg 116:1379–1386

    Article  PubMed  CAS  Google Scholar 

  • Feng JQ, Huang H, Lu Y, Ye L, Xie Y, Tsutsui TW, Kunieda T, Castranio T, Scott G, Bonewald LB, Mishina Y (2003) The dentin matrix protein 1 (Dmp1) is specifically expressed in mineralized, but not soft, tissues during development. J Dent Res 82:776–780

    Article  PubMed  CAS  Google Scholar 

  • Ferrell CM, Dorsam ST, Ohta H, Humphries RK, Derynck MK, Haqq C, Largman C, Lawrence HJ (2005) Activation of stem-cell specific genes by HoxA9 and HoxA10 homeodomain proteins in CD34+ human cord blood cells. Stem Cells 23:644–655

    Article  PubMed  CAS  Google Scholar 

  • Friedman MS, Long MW, Hankenson KD (2006) Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenic protein-6. J Cell Biochem 98:538–554

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa H, Yamamoto T, Fujigaki Y, Misaki T, Ohashi N, Takayama T, Suzuki S, Mugiya S, Oda T, Uchida C, Kitagawa K, Hattori T, Hayashi H, Ozono S, Kitagawa M, Hishida A (2010) Reduction of transforming growth factor-β type II receptor is caused by the enhanced ubiquitin-dependent degradation in human renal cell carcinoma. Int J Cancer 127:1517–1525

    Article  PubMed  CAS  Google Scholar 

  • Gazzerro E, Canalis E (2006) Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 7:51–65

    Article  PubMed  CAS  Google Scholar 

  • Gruber R, Kandler B, Fuerst G, Fischer MB, Watzek G (2004) Porcine sinus mucosa holds cells that respond to bone morphogenetic protin (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro. Clin Oral Impl Res 15:575–580

    Article  Google Scholar 

  • Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T, Narayanan AS (2002) Cementum matrix formation in vivo by cultured dental follicle cells. Bone 31:606–611

    Article  PubMed  CAS  Google Scholar 

  • Huang GT-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  PubMed  CAS  Google Scholar 

  • Iimura T, Pourquie O (2007) Hox genes in time and space during vertebrate body formation. Dev Growth Differ 49:265–275

    Article  PubMed  CAS  Google Scholar 

  • Iwata J-I, Hosokawa R, Sanchez-Lara PA, Urata M, Slavkin H, Chai Y (2010) Transforming growth factor-β regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells. J Biol Chem 285:4975–4982

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.J Cell Biochem 64:295-312

    Article  PubMed  CAS  Google Scholar 

  • Jin Z-L, Zhang Y-K, Sun H-Y, Lin Z, Bi Y-C, Duan Y-Z, Ding Y (2008) Osteogenic-related gene expression profiles of human dental follicle cells induced by dexamethasone. Acta Pharmacol Sin 29:1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Leucht P, Kim J-B, Amasha R, James AW, Girod S, Helms JA (2008) Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135:2845–2854

    Article  PubMed  CAS  Google Scholar 

  • Liedtke S, Buchheiser A, Bosch J, Bosse F, Kruse F, Zhao X, Santourlidis S, Kögler G (2010) The Hox code as a “biological fingerprint” to distinguish functionally distinct stem cell populations derived from cord blood. Stem Cell Res 5:40–50

    Article  PubMed  CAS  Google Scholar 

  • Lindroos B, Mäenpää K, Ylikomi T, Oja H, Suuronen R, Miettinen S (2008) Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochem Biophys Res Comm 368:329–335

    Article  PubMed  CAS  Google Scholar 

  • Luu HH, Song W-X, Luo X, Manning D, Luo J, Deng Z-L, Sharff KA, Montag AG, Haydon RC, He T-C (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 25:665–677

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K (2004) Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23:552–563

    Article  PubMed  CAS  Google Scholar 

  • Mimura S, Kimura N, Hirata M, Tateyama D, Hayashida M, Umezawa A, Kohara A, Nikawa H, Okamoto T, Furue MK (2011) Growth factor-defined culture medium for human mesenchymal stem cells. Int J Dev Biol 55:181–187

    Article  PubMed  CAS  Google Scholar 

  • Morsczeck C (2006) Gene expression of runx2, osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int 78:98–102

    Article  PubMed  CAS  Google Scholar 

  • Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann KH (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    Article  PubMed  CAS  Google Scholar 

  • Okubo Y, Bessho K, Fujimura K, Kusumoto K, Ogawa Y, Iizuka T (2002) Expression of bone morphogenic protein in the course of osteinduction by recombinant human bone morphogenic protein-2. Clin Oral Impl Res 13:80–85

    Article  Google Scholar 

  • Oreffo ROC, Kusec V, Romberg S, Triffitt JT (1999) Human bone marrow osteoprogenitors express estrogen receptor-alpha and bone morphogenetic proteins 2 and 4 mRNA during osteoblastic differentiation. J Cell Biochem 75:382–392

    Article  PubMed  CAS  Google Scholar 

  • Pentek J, Parker L, Wu A, Arora K (2009) Follistatin preferentially antagonizes activin rather than BMP signaling in Drosophila. Genesis 47:261–273

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Qin C, D’Souza R, Feng JQ (2007) Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phophate homeostasis. J Dent Res 86:1134–1141

    Article  PubMed  CAS  Google Scholar 

  • Saugspier M, Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C (2010) The differentiation and gene expression profile of human dental follicle cells. Stem Cells Dev 19:707–717

    PubMed  CAS  Google Scholar 

  • Shibaguchi T, Kato J, Abe M, Tamamura Y, Tabata MJ, Liu J-G, Iwamoto M, Wakisaka S, Wanaka A, Kurisu K (2003) Expression and role of LHX8 in murine tooth development. Arch Histol Cytol 66:95–108

    Article  PubMed  CAS  Google Scholar 

  • Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62

    PubMed  CAS  Google Scholar 

  • Ulmer FL, Winkel A, Kohorst P, Stiesch M (2010) Stem cells—prospects in dentistry. Schweiz Monatsschr Zahnmed 120:860–872

    PubMed  Google Scholar 

  • Völlner F, Ernst W, Driemel O, Morsczeck C (2009) A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation 77:433–441

    Article  PubMed  Google Scholar 

  • Vukicevic S, Grgurevic L (2009) BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev 20:441–448

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Jin F, Tang L, Yu J, Xu L, Yang Z, Wu G, Duan Y, Jin Y (2008) Dentin non-collagenous proteins (dNCPs) can stimulate dental follicle cells to differentiate into cementoblast lineages. Biol Cell 100:291–302

    Article  PubMed  CAS  Google Scholar 

  • Yagyuu T, Ikeda E, Ohgushi H, Tadokoro M, Hirose M, Maeda M, Inagake K, Kirita T (2010) Hard tissue-forming potential of stem/progenitor cells in human dental follicle and dental papilla. Arch Oral Biol 55:68–76

    Article  PubMed  CAS  Google Scholar 

  • Yao S, Pan F, Prpic V, Wise GE (2008) Differentiation of stem cells in the dental follicle. J Dent Res 87:767–771

    Article  PubMed  CAS  Google Scholar 

  • Yokoi T, Saito M, Kiyono T, Iseki S, Kosaka K, Nishida E, Tsubakimoto T, Harada H, Eto K, Noguchi T, Teranaka T (2007) Establishment of immortalized dental follicle cells for generating periodontal ligament in vivo. Cell Tissue Res 327:301–311

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Xiao G, Berry JE, Franceschi RT, Reddi A, Somerman MJ (2002) Bone morphogenetic protein 2 induces dental follicle cells to differentiate toward a cementoblast/osteoblast phenotype. J Bone Miner Res 17:1441–1451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Yoshimitsu Abiko for his valuable advice and Ms. Asayo Imaoka for the oligonucleotide microarray technology (both from the Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ogura.

Additional information

This study was supported by Grants-in-Aid for Scientific Research (c) (20592347) from the Japan Society for the Promotion of Science.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primers used for real-time polymerase chain reaction analysis (nt nucleotide number) (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aonuma, H., Ogura, N., Takahashi, K. et al. Characteristics and osteogenic differentiation of stem/progenitor cells in the human dental follicle analyzed by gene expression profiling. Cell Tissue Res 350, 317–331 (2012). https://doi.org/10.1007/s00441-012-1477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1477-6

Keywords

Navigation